
Simulink® Check™
User's Guide

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Check™ User's Guide
© COPYRIGHT 2004–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2017 Online only New for Version 4.0 (Release 2017b)
March 2018 Online only Revised for Version 4.1 (Release 2018a)
September 2018 Online only Revised for Version 4.2 (Release 2018b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Simulink Check Product Description . 1-2
Key Features . 1-2

Check for Standards Compliance in Your Model 1-3
Detect and Fix Model Advisor Check Violations by Using Edit-

Time Checking . 1-3
Detect Model Advisor Check Violations Interactively 1-5

Collect Model Metric Data by Using the Metrics
Dashboard . 1-9

Analyze Metric Data . 1-9
Drill-In to Explore Metric Data . 1-11
Refactor Model Based on Metric Data 1-12

Refactor Model with Clone Detection and Model Transformer
Tools . 1-14

Identify and Replace Clones with Links to Library Blocks . . . 1-14
Replace Qualifying Modeling Patterns with Variant Blocks . . 1-17

Verification and Validation
2

Test Model Against Requirements and Report Results 2-2
Requirements – Test Traceability Overview 2-2
Display the Requirements and Test Case 2-3
Link Requirements to Tests . 2-4
Run the Test . 2-5
Report the Results . 2-6

iii

Contents

Analyze a Model for Standards Compliance and Design
Errors . 2-8

Standards and Analysis Overview . 2-8
Check Model for Style Guideline Violations and Design

Errors . 2-8

Perform Functional Testing and Analyze Test Coverage 2-11
Functional Testing and Coverage Analysis Overview 2-11
Incrementally Increase Test Coverage Using Test Case

Generation . 2-11

Analyze Code and Test Software-in-the-Loop 2-15
Code Analysis and Testing Software-in-the-Loop Overview . . 2-15
Analyze Code for Defects, Metrics, and MISRA C:2012 2-15

Checking Systems Interactively
3

Check for Compliance Using the Model Advisor and Edit-Time
Checking . 3-2

Check Your Model Interactively . 3-2
Check Your Model While You Edit . 3-3

Transform Model to Variant System . 3-8
Example Model . 3-8
Perform Variant Transform on Example Model 3-10
Model Transformation Limitations . 3-12

Enable Component Reuse by Using Clone Detection 3-14
Exact Clones Versus Similar Clones 3-14
Identify Exact and Similar Clones . 3-14
Save and View Clone Detection Reports 3-19
Additional Information . 3-19

Improve Model Readability by Eliminating Local Data Store
Blocks . 3-21

Example Model . 3-21
Replace Data Store Blocks . 3-23
Limitations . 3-25

iv Contents

Limit Model Checks . 3-26
What Is a Model Advisor Exclusion? 3-26
Save Model Advisor Exclusions in a Model File 3-27
Save Model Advisor Exclusions in Exclusion File 3-28
Create Model Advisor Exclusions . 3-28
Review Model Advisor Exclusions . 3-30
Manage Exclusions . 3-31
Edit-Time Exclusions . 3-33

Limit Model Checks By Excluding Gain and Outport
Blocks . 3-36

Model Checks for DO-178C/DO-331 Standard Compliance . . 3-40
Model Checks for High Integrity Systems Modeling Checks . 3-41

Model Checks for High Integrity Systems Modeling
Checks . 3-0

High Integrity Systems Modeling Checks 3-42

Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN
50128 Standard Compliance . 3-54

Model Checks for High Integrity Systems Modeling Checks . 3-55

Model Checks for MathWorks Automotive Advisory Board
(MAAB) Guideline Compliance . 3-61

Model Checks for Japan MATLAB Automotive Advisory Board
(JMAAB) Guideline Compliance . 3-67

Set MAAB and JMAAB Checks to Look Under Masks or Follow
Links . 3-83

Control Whether Checks Look Under Masks or Follow
Links . 3-83

Model Checks for MISRA C:2012 Compliance 3-84

Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC
TS 17961 Standards) . 3-85

Model Checks for Requirements Links 3-86

v

Generate Model Advisor Reports in Adobe PDF and Microsoft
Word Formats . 3-87

Modify Default Template . 3-87

Check Systems Programmatically
4

Checking Systems Programmatically . 4-2

Find Check IDs . 4-3

Create a Function for Checking Multiple Systems 4-5

Check Multiple Systems in Parallel . 4-7

Create a Function for Checking Multiple Systems in
Parallel . 4-8

Archive and View Results . 4-10
Archive Results . 4-10
View Results in Command Window . 4-10
View Results in Model Advisor Command-Line Summary

Report . 4-11
View Results in Model Advisor GUI . 4-12
View Model Advisor Report . 4-13

Archive and View Model Advisor Run Results 4-14

Model Metrics
5

Collect and Explore Metric Data by Using the Metrics
Dashboard . 5-2

Metrics Dashboard Widgets . 5-2
Size . 5-3
Modeling Guideline Compliance . 5-4
Architecture . 5-6

vi Contents

Metric Thresholds . 5-7
Dashboard Limitations . 5-7

Collect Model Metrics Using the Model Advisor 5-9

Create a Custom Model Metric . 5-11
Create Model Metric for Nonvirtual Block Count 5-11
Limitations . 5-17

Collect Model Metrics Programmatically 5-19
Example Model . 5-19
Collect Metrics . 5-19
Access Results . 5-20
Display and Store Results . 5-20
Limitations . 5-21

Model Metric Data Aggregation . 5-23
How Model Metric Aggregation Works 5-23
Access Aggregated Metric Data . 5-25

Enable Subsystem Reuse with Clone Detection 5-28

Collect Compliance Data and Explore Results in the Model
Advisor . 5-32

Collect Metric Data Programmatically and View Data Through
the Metrics Dashboard . 5-37

Fix Metric Threshold Violations in a Continuous Integration
Systems Workflow . 5-40

Simulink Project Setup . 5-41
GitLab Setup . 5-43
Jenkins Setup . 5-44
Continuous Integration Workflow . 5-44

Customize Metrics Dashboard Layout and Functionality 5-49
Configure Compliance Metrics . 5-49
Add a Custom Metric to Dashboard 5-53
Add Metric Thresholds . 5-57

vii

Overview of Customizing the Model Advisor
6

Model Advisor Customization . 6-2
Requirements for Customizing the Model Advisor 6-2

Create Model Advisor Checks
7

Create Model Advisor Checks Workflow 7-2

Customization File Overview . 7-3

Common Utilities for Creating Checks 7-5

Create and Add Custom Checks - Basic Examples 7-6
Add Custom Check to by Product Folder 7-6
Create Customized Pass/Fail Check . 7-7
Create Customized Pass/Fail Check with Fix Action 7-10
Create Customized Pass/Fail Check with Detailed Result

Collections . 7-14

Create Check for Model Configuration Parameters 7-21
Create Data File for Diagnostics Pane Configuration

Parameter Check . 7-21
Create Check for Diagnostics Pane Model Configuration

Parameters . 7-24
Data File for Configuration Parameter Check 7-26

Define Checks for Supported or Unsupported Blocks and
Parameters . 7-34

Example . 7-34
Create Block Parameter Constraints 7-35
Create Model Advisor Checks from Constraints 7-38

Register Checks . 7-41
Create sl_customization Function . 7-41
Register Checks . 7-41

viii Contents

Define Startup and Post-Execution Actions Using Process
Callback Functions . 7-43

Process Callback Function Arguments 7-43
Process Callback Function . 7-44
Tips for Using the Process Callback Function in a

sl_customization File . 7-45

Define Custom Checks . 7-46
About Custom Checks . 7-46
Contents of Check Definitions . 7-46
Display and Enable Checks . 7-47
Define Where Custom Checks Appear 7-48
Check Definition Function . 7-49
Define Check Input Parameters . 7-50
Define Model Advisor Result Explorer Views 7-51
Define Check Actions . 7-52

Create Callback Functions and Results 7-54
About Callback Functions . 7-54
Informational Check Callback Function 7-55
Simple Check Callback Function . 7-56
Detailed Check Callback Function . 7-57
Check Callback Function with Hyperlinked Results 7-58
Check Callback Function for Detailed Result Collections 7-61
Action Callback Function . 7-63
Check With Subchecks and Actions . 7-64
Basic Check with Pass/Fail Status . 7-66

Exclude Blocks From Custom Checks 7-70

Format Check Results . 7-73
Format Results . 7-73
Format Text . 7-73
Format Lists . 7-74
Format Tables . 7-74
Format Paragraphs . 7-76
Formatted Output . 7-76
Format Linebreaks . 7-77
Format Images . 7-77

ix

Create Custom Configurations by Organizing Checks
and Folders

8
Create Custom Configurations . 8-2

Create Configurations by Organizing Checks and Folders 8-3

Create Procedural-Based Configurations 8-0

Organize Checks and Folders Using the Model Advisor
Configuration Editor . 8-5

Overview of the Model Advisor Configuration Editor 8-5
Start the Model Advisor Configuration Editor 8-8
Organize Checks and Folders Using the Model Advisor
Configuration Editor . 8-9

Organize Customization File Checks and Folders 8-11
Customization File Overview . 8-11
Register Tasks and Folders . 8-12
Define Custom Tasks . 8-13
Define Custom Folders . 8-14
Customization Example . 8-16

Verify and Use Custom Configurations 8-17
Update the Environment to Include Your sl_customization

File . 8-17
Verify Custom Configurations . 8-17

Customize Model Advisor Check for Nondefault Block
Attributes . 8-19

Automatically Fix Display of Nondefault Block Parameters . 8-20

x Contents

Create Procedural-Based Model Advisor
Configurations

9
Create Procedures . 9-2

What Is a Procedure? . 9-2
Create Procedures Using the Procedures API 9-2
Define Procedures . 9-2

Create Procedural-Based Configurations 9-5
Overview of Procedural-Based Configurations 9-5
Create a Procedural-Based Configuration 9-6

Add Checks and Tasks to the Model Advisor 9-10

Deploy Custom Configurations
10

Overview of Deploying Custom Configurations 10-2
About Deploying Custom Configurations 10-2
Deploying Custom Configurations Workflow 10-2

How to Deploy Custom Configurations 10-3

Manually Load and Set the Default Configuration 10-4

Automatically Load and Set the Default Configuration 10-5

xi

Getting Started

• “Simulink Check Product Description” on page 1-2
• “Check for Standards Compliance in Your Model” on page 1-3
• “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-9
• “Refactor Model with Clone Detection and Model Transformer Tools” on page 1-14

1

Simulink Check Product Description
Verify compliance with style guidelines and modeling standards

Simulink Check provides industry-recognized checks and metrics that identify standard
and guideline violations during development. Supported high-integrity software
development standards include DO-178, ISO 26262, IEC 61508, IEC 62304, and
MathWorks Automotive Advisory Board (MAAB) Style Guidelines. Edit-time checks
identify compliance issues as you edit. You can create custom checks to comply with your
own standards or guidelines.

Simulink Check provides metrics such as size and complexity that you can use to evaluate
your model’s architecture and compliance to standards. A consolidated metrics dashboard
lets you assess design status and quality. Automatic model refactoring lets you replace
duplicate design elements, reduce design complexity, and identify reusable content.

Support for industry standards is available through IEC Certification Kit (for ISO 26262
and IEC 61508) and DO Qualification Kit (for DO-178).

Key Features
• Edit-time checking to identify model guideline violations
• Compliance checking for MAAB style guidelines and high-integrity system design

guidelines (DO-178, ISO 26262, IEC 61508, IEC 62304)
• Compliance checking for secure coding standards (CERT C, CWE, ISO/IEC TS 17961)
• Custom check authoring with Model Advisor Configuration Editor
• Metrics for computing model size, complexity, and readability
• Dashboard providing consolidated view of metrics and project status
• Model refactoring with clone detection and model transformations

1 Getting Started

1-2

Check for Standards Compliance in Your Model
WithSimulink Check, the Model Advisor can check for model conditions that cause
generation of inefficient code or code unsuitable for safety-critical applications.

The Model Advisor produces a report that lists the suboptimal conditions or settings that
it finds. The Model Advisor proposes better model configuration settings.

Detect and Fix Model Advisor Check Violations by Using Edit-
Time Checking
In the Model Advisor, you can check that your model complies with certain guidelines
while you edit.

1 Create a copy of the example project in a working folder. At the command line, enter:

slVerificationCruiseStart
2 Open the model. At the command line, enter:

open_system simulinkCruiseErrorAndStandardsExample
3 In the model window, turn on edit-time checking by selecting Analysis > Model

Advisor > Display Advisor Checks in Editor. Alternatively, on the model editor
toolbar, select Display Advisor Checks in Editor from the Model Advisor menu.

4 The highlighted subsystem block indicates a compliance issue. Place your cursor over
the highlighted block and click the warning icon. A dialog box provides a description
of the warning. For detailed documentation on the check that detected the issue,
click the question mark. In this case, the warning indicates that the subsystem block
name contains incorrect characters.

 Check for Standards Compliance in Your Model

1-3

5 The subsystem block name, Compute target speed, contains incorrect spaces. To
fix this violation, select Compute target speed and replace the name with
ComputeTargetSpeed.

After renaming the block, you do not see a warning icon when you place your cursor
over the subsystem block.

1 Getting Started

1-4

Detect Model Advisor Check Violations Interactively
You can interactively check that your model complies with DO-178C/DO-331 guidelines by
using the Model Advisor.

1 In the model window, select Analysis > Model Advisor > Model Advisor.
2 To choose simulinkCruiseErrorAndStandardsExample from the System

Hierarchy, click OK.

 Check for Standards Compliance in Your Model

1-5

3 In the left pane, in the By Product > Simulink Check > Modeling Standards >
DO-178C/DO-331 Checks folder, select:

• Check safety-related optimization settings
• Check safety-related diagnostic settings for solvers
• Check safety-related diagnostic settings for sample time

4 Right-click the DO-178C/DO-331 Checks node, and then select Run Selected
Checks.

1 Getting Started

1-6

Update Model to Reach Compliance

1 To review the configuration parameters that are not set to the recommended values,
click Check safety-related optimization settings.

 Check for Standards Compliance in Your Model

1-7

2 To update the optimization parameters to the recommended values, click the Modify
Settings button in the Action section of the right pane. The Model Advisor updates
the parameters to the recommended value and details the results.

3 Repeat steps 1 and 2 for the other two checks: Check safety-related diagnostic
settings for solvers and Check safety-related diagnostic settings for sample
time.

4 To verify that your model now passes, rerun the selected checks.

Display an HTML Report of Check Results

To generate a results report of the Simulink Check checks, select the DO-178C/DO-331
Checks node, and then, in the right pane click Generate Report.

See Also

More About
• “Check for Compliance Using the Model Advisor and Edit-Time Checking” on page 3-

2
• “Create Model Advisor Checks Workflow” on page 7-2

1 Getting Started

1-8

Collect Model Metric Data by Using the Metrics
Dashboard

To collect model metric data and assess the design status and quality of your model, use
the Metrics Dashboard. The Metrics Dashboard provides a view into the size,
architecture, and guideline compliance for your model.

1 Open the model by typing sldemo_fuelsys.
2 In the model window, open the Metrics Dashboard by selecting Analysis > Metrics

Dashboard.
3 To collect metric data for this model, click the All Metrics icon.

Analyze Metric Data
The Metrics Dashboard contains widgets that provide visualization of metric data in these
categories: size, modeling guideline compliance, and architecture. By default, some
widgets contain metric threshold values. These values specify whether your metric data is
compliant (appears green in the widget) or produces a warning (appears yellow in the
widget). Metrics that do not have threshold values appear blue in the widget. You can
specify noncompliant ranges and apply other Metrics Dashboard customizations. For
more information, see “Customize Metrics Dashboard Layout and Functionality” on page
5-49.

 Collect Model Metric Data by Using the Metrics Dashboard

1-9

In the ARCHITECTURE section of the dashboard, locate the Model Complexity widget.
This widget is a visual representation of the distribution of complexity across the
components in the model hierarchy. For each complexity range, a colored bar indicates
the number of components that fall within that range. Darker green colors indicate more
components. In this case, several components have a cyclomatic complexity value in the
lowest range, while just one component has a higher complexity. This component has a
cyclomatic complexity above 30, which is the default threshold between compliant and
warning.

1 Getting Started

1-10

Drill-In to Explore Metric Data
To explore metric data in more detail, click an individual metric widget. For your selected
metric, a table displays the value, aggregated value, and measures (if applicable) at the
model component level. From the table, the dashboard provides traceability and
hyperlinks to the data source so that you can get detailed results.

To drill into model complexity details at the model, subsystem, and chart level, click
anywhere in the Model Complexity widget. In this example, the control_logic chart
has a cyclomatic complexity value of 51, which is yellow because it is in the warning
range.

To see this component in the model, click the control_logic hyperlink.

 Collect Model Metric Data by Using the Metrics Dashboard

1-11

Refactor Model Based on Metric Data
Once you have used the dashboard to determine which components you must modify to
meet quality standards, you can refactor your model. For the Modeling Guideline
Compliance widgets, to fix issues, open the Model Advisor. For the Potential Reuse
widget, to create and link to library blocks, open the Clone Detection tool. Open the
Model Advisor and the Clone Detection tool by clicking respective buttons on the drill-in
details.

For this example, refactoring the control_logic chart by moving logic into atomic
subcharts reduces the complexity for that component.

1 Getting Started

1-12

See Also

More About
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2
• “Model Metrics”
• “Collect Model Metrics Programmatically” on page 5-19

 See Also

1-13

Refactor Model with Clone Detection and Model
Transformer Tools

With Simulink Check, you can use the Model Transformer and Identify Modeling Clones
tools to refactor a model to improve model componentization and readability and enable
reuse.

Identify and Replace Clones with Links to Library Blocks
You can use the Identify Modeling Clones tool to enable component reuse by completing
these tasks:

• Identify subsystem clones.
• Create library blocks from clones.
• Create a model that replaces clones with links to library blocks.
• Identify similar clones.

1 Open the example model ex_clone_detection and the corresponding library
ex_clone_library.

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_detection
ex_clone_library

2 Save the model and library to the current folder on the MATLAB path.

1 Getting Started

1-14

 Refactor Model with Clone Detection and Model Transformer Tools

1-15

3 In the Simulink Editor, from the Analysis menu, select Refactor Model > Identify
Modeling Clones. To open the Identify Modeling Clones tool programmatically, at
the MATLAB command prompt type: clonedetection('ex_clone_detection').

4 Open the Identify Modeling Clones folder.
5 Select Replace clones of library blocks with library links. In the Library file

name field, insert the library name, ex_clone_library.
6 Select the Identify Modeling Clones folder. Then, click Run Selected Checks.

Because every check is selected by default, the tool identifies all possible clones in
the model.

7 Select each check. The checks contain hyperlinks to the clones in the model.

1 Getting Started

1-16

Note Each check contains a Refactor Model button. To replace clones with links to
library blocks, you must complete each check and click Refactor Model. You cannot
simultaneously run selected checks and refactor the model.

Replace Qualifying Modeling Patterns with Variant Blocks
To improve model componentization by replacing qualifying modeling patterns with
Variant Source and Variant Subsystem blocks, use the Model Transformer tool.

The ex_variants_transformer model contains several modeling patterns that qualify
for transformation into variants blocks.

 Refactor Model with Clone Detection and Model Transformer Tools

1-17

1 Open the example model ex_variants_transformer by entering these commands
at the MATLAB command line:

1 Getting Started

1-18

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_variants_transformer

2 Save the model to your working folder.
3 From the Simulink Editor, open the Model Transformer tool by selecting Refactor

Model > Model Transformer. Or, in the Command Window, type:

mdltransformer(‘ex_variants_transformer’)

4 Select the Transform model to variant system check.
5 Click Run This Check. The top Result table contains a list of system constants that

qualify to be part of condition expressions in Variant Source or Variant Subsystem
blocks.

6 Click Refactor Model.
7 Your working folder contains a folder called m2m_ex_variants_transformer. This

folder contains the transformed model gen0_ex_variants_transformer.
8 The bottom Results table contains hyperlinks to the original and transformed

models.
9 Select the Eliminate data store blocks check. You can use this check to replace

data stores with blocks that improve model readability by making data dependency
explicit. For an example, see “Improve Model Readability by Eliminating Local Data
Store Blocks” on page 3-21.

 Refactor Model with Clone Detection and Model Transformer Tools

1-19

See Also

More About
• “Refactor Models”
• “Enable Component Reuse by Using Clone Detection” on page 3-14
• “Transform Model to Variant System” on page 3-8
• “Improve Model Readability by Eliminating Local Data Store Blocks” on page 3-21
• “Customize Metrics Dashboard Layout and Functionality” on page 5-49
• “Fix Metric Threshold Violations in a Continuous Integration Systems Workflow” on

page 5-40

1 Getting Started

1-20

Verification and Validation

• “Test Model Against Requirements and Report Results” on page 2-2
• “Analyze a Model for Standards Compliance and Design Errors” on page 2-8
• “Perform Functional Testing and Analyze Test Coverage” on page 2-11
• “Analyze Code and Test Software-in-the-Loop” on page 2-15

2

Test Model Against Requirements and Report Results

Requirements – Test Traceability Overview
Traceability between requirements and test cases helps you interpret test results and see
the extent to which your requirements are verified. You can link a requirement to
elements that help verify it, such as test cases in the Test Manager, verify statements in
a Test Sequence block, or Model Verification blocks in a model. When you run tests, a
pass/fail summary appears in your requirements set.

This example demonstrates a common requirements-based testing workflow for a cruise
control model. You start with a requirements set, a model, and a test case. You add
traceability between the tests and the safety requirements. You run the test, summarize
the verification status, and report the results.

In this example, you conduct a simple test of two requirements in the set:

• That the cruise control system transitions to disengaged from engaged when a braking
event has occurred

• That the cruise control system transitions to disengaged from engaged when the
current vehicle speed is outside the range of 20 mph to 90 mph.

2 Verification and Validation

2-2

Display the Requirements and Test Case
1 Create a copy of the project in a working folder. The project contains data,

documents, models, and tests. Enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 In the project models folder, open the simulinkCruiseAddReqExample.slx
model.

3 Display the requirements. Click the icon in the lower-right corner of the model
canvas, and select Requirements. The requirements appear below the model
canvas.

4 Expand the requirements information to include verification and implementation
status. Right-click a requirement and select Verification Status and
Implementation Status.

 Test Model Against Requirements and Report Results

2-3

5 Open the Simulink Test file slReqTests.mldatx from the tests folder. The test file
opens in the Test Manager.

Link Requirements to Tests
Link the requirements to the test case.

1 In the Requirements Browser, select requirement S 3.1.
2 In the Test Manager, expand the test file and select the Safety Tests test case.

Expand the Requirements section.
3 In the Requirements section, select Add > Link to Selected Requirement.

The requirements browser displays the verification-type link.

2 Verification and Validation

2-4

4 Also add a link for item S 3.4.

Run the Test
1 The test case uses a test harness SafetyTest_Harness1. In the test harness, a test

sequence sets the input conditions and checks the model behavior:

• The BrakeTest sequence engages the cruise control, then applies the brake. It
includes the verify statement

verify(engaged == false,...
 'verify:brake',...
 'system must disengage when brake applied')

• The LimitTest sequence engages the cruise control, then ramps up the vehicle
speed until it exceeds the upper limit. It includes the verify statement.

verify(engaged == false,...
 'verify:limit',...
 'system must disengage when limit exceeded')

2 Run the test case. In the Test Manager toolstrip, click Run.
3 When the test finishes, expand the Verify Statements results. The Test Manager

results show that both assessments pass, and the plot shows the detailed results of
each verify statement.

 Test Model Against Requirements and Report Results

2-5

4 In the Requirements Browser, right-click a requirement and select Refresh
Verification Status to show the passing test results for each requirement.

Report the Results
1 Create a report using a custom Microsoft Word template.

a From the Test Manager results, right-click the test case name. Select Create
Report.

2 Verification and Validation

2-6

b In the Create Test Result Report dialog box, set the options:

• Title — SafetyTest
• Results for — All Tests
• File Format — DOCX
• For the other options, keep the default selections.

c For the Template File, select the ReportTemplate.dotx file in the
documents project folder.

d Enter a file name and select a location for the report.
e Click Create.

2 Review the report.

a In the Test Case Requirements section, click the link to trace to the
requirements document.

b The Verify Result section contains details of the two assessments in the test,
and links to the simulation output.

See Also

Related Examples
• “Link Tests to Requirements” (Simulink Test)
• “Validate Requirements Links in a Model” (Simulink Requirements)
• “Customize Requirements Traceability Report for Model” (Simulink Requirements)

 See Also

2-7

Analyze a Model for Standards Compliance and Design
Errors

Standards and Analysis Overview
During model development, check and analyze your model to increase confidence in its
quality. Check your model against standards such as MAAB style guidelines and high-
integrity system design guidelines such as DO-178 and ISO 26262. Analyze your model
for errors, dead logic, and conditions that violate required properties. Using the analysis
results, update your model and document exceptions. Report the results using
customizable templates.

Check Model for Style Guideline Violations and Design Errors
This example shows how to use the Model Advisor to check a cruise control model for
MathWorks® Automotive Advisory Board (MAAB) style guideline violations and design
errors. Select checks and run the analysis on the model. Iteratively debug issues using
the Model Advisor and rerun checks to verify that it is in compliance. After passing your
selected checks, report results.

2 Verification and Validation

2-8

Check Model for MAAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAAB modeling
guidelines.

1 Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample
3 In the model window, select Analysis > Model Advisor > Model Advisor.
4 Click OK to choose simulinkCruiseErrorAndStandardsExample from the

System Hierarchy.
5 Check your model for MAAB style guideline violations using Simulink Check.

a In the left pane, in the By Product > Simulink Check > Modeling Standards
> MathWorks Automotive Advisory Board Checks folder, select:

• Check for indexing in blocks
• Check for prohibited blocks in discrete controllers
• Check model diagnostic parameters

b Right-click the MathWorks Automotive Advisory Board Checks node, and
then select Run Selected Checks.

c Click Check model diagnostic parameters to review the configuration
parameter settings that violate MAAB style guidelines.

d In the right pane, click the parameter links to update the values in the
Configuration Parameters dialog box.

e To verify that your model passes, rerun the check. Repeat steps c and d, if
necessary, to reach compliance.

f To generate a results report of the Simulink Check checks, select the
MathWorks Automotive Advisory Board Checks node, and then, in the right
pane click Generate Report....

 Analyze a Model for Standards Compliance and Design Errors

2-9

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using
Simulink Design Verifier.

1 In the left pane, in the By Product > Simulink Design Verifier folder, select
Design Error Detection.

2 In the right pane, click Run Selected Checks.
3 After the analysis is complete, expand the Design Error Detection folder, then

select checks to review warnings or errors.
4 In the right pane, click Simulink Design Verifier Results Summary. The dialog

box provides tools to help you diagnose errors and warnings in your model.

a Review the results on the model. Click Highlight analysis results on model.
Click the Compute target speed subsystem, outlined in red. The Simulink
Design Verifier Results Inspector window provides derived ranges that can help
you understand the source of an error by identifying the possible signal values.

b Review the harness model. The Simulink Design Verifier Results Inspector
window displays information that an overflow error occurred. To see the test
cases that demonstrate the errors, click View test case.

c Review the analysis report. In the Simulink Design Verifier Results Inspector
window, click Back to summary. To see a detailed analysis report, click HTML
or PDF.

See Also

Related Examples
• “Check for Compliance Using the Model Advisor and Edit-Time Checking” on page 3-

2
• “Collect Model Metrics Using the Model Advisor” on page 5-9
• “Run a Design Error Detection Analysis” (Simulink Design Verifier)
• “Prove Properties in a Model” (Simulink Design Verifier)

2 Verification and Validation

2-10

Perform Functional Testing and Analyze Test Coverage
Functional Testing and Coverage Analysis Overview
Functional testing starts with building test cases based on requirements. These tests can
cover key aspects of your design and verify that individual model components meet
requirements. Test cases include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests
systematically. To check for regression, add baseline criteria to the test cases and test the
model regularly. Coverage measurement reflects the extent to which these tests have fully
exercised the model. Coverage measurement also helps you to add tests and
requirements to meet coverage targets.

Incrementally Increase Test Coverage Using Test Case
Generation
This example shows a functional testing-based testing workflow for a cruise control
model. You start with a model that has tests linked to an external requirements document,
analyze the model for coverage in Simulink Coverage, incrementally increase coverage
with Simulink Design Verifier, and report the results.

 Perform Functional Testing and Analyze Test Coverage

2-11

Explore the Test Harness and the Model

1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddReqExample
sltest.harness.open('simulinkCruiseAddReqExample','SafetyTest_Harness1')

3 Load the test suite from “Test Model Against Requirements and Report Results”
(Simulink Test). At the command line, enter:

sltest.testmanager.load('slReqTests.mldatx')
sltest.testmanager.view

4 Open the test sequence block. The sequence tests:

• That the system disengages when the brake pedal is pressed
• That the system disengages when the speed exceeds a limit

Some test sequence steps are linked to a requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the test manager, enable coverage collection for the test case.

a Open the test manager. In the Simulink menu, click Analysis > Test Manager.
b In the Test Browser, click the slReqTests test file.
c Expand Coverage Settings.
d Under COVERAGE TO COLLECT, select Record coverage for referenced

models.
e Under COVERAGE METRICS, select Decision, Condition, and MCDC.

2 Verification and Validation

2-12

2 Run the test. On the test manager toolstrip, click Run.
3 When the test finishes, in the Test Manager, navigate to the test case. The aggregated

coverage results show that the example model achieves 50% decision coverage, 41%
condition coverage, and 25% MCDC coverage.

 Perform Functional Testing and Analyze Test Coverage

2-13

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage.
Select the test case in the Results and Artifacts and open the aggregated coverage
results section.

2 Select the test results from the previous section and then click Add Tests for
Missing Coverage.

The Add Tests for Missing Coverage options open.
3 Under Harness, choose Create a new harness.
4 Click OK to add tests to the test suite using Simulink Design Verifier.
5 Run the updated test suite. On the test manager toolstrip, click Run. The test results

include coverage for the combined test case inputs, achieving increased model
coverage.

See Also

Related Examples
• “Link Tests to Requirements” (Simulink Test)
• “Run-Time Assessments” (Simulink Test)
• “Test Model Output Against a Baseline” (Simulink Test)
• “Highlight Functional Dependencies” (Simulink Design Verifier)
• “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
• “Increase Test Coverage for a Model” (Simulink Test)

2 Verification and Validation

2-14

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview
Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check for
run-time errors with static code analysis and run test cases that evaluate the code against
requirements and evaluate code coverage. Based on the results, refine the code and add
tests. For generated code, demonstrate that code execution produces equivalent results
to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Analyze Code for Defects, Metrics, and MISRA C:2012
This workflow describes how to check if your model produces MISRA® C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and Model Advisor. To check whether the code is MISRA compliant, you use
the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the Simulink project:

 Analyze Code and Test Software-in-the-Loop

2-15

path = fullfile(matlabroot,'toolbox','shared','examples',...
'verification','src','cruise')
run(fullfile(path,'slVerificationCruiseStart'))

2 From the Simulink project, open the model
simulinkCruiseErrorAndStandardsExample.

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating
code.

1 Right-click Compute target speed and select C/C++ > Code Generation Advisor.
2 Select the Code Generation Advisor folder. Add the Polyspace objective. The MISRA

C:2012 guidelines objective is already selected.

2 Verification and Validation

2-16

3 Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this mode, the check for incompatible blocks passes, but there are
some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

4 Click on check that was not passed. Accept the parameter changes by selecting
Modify Parameters.

5 Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
more compliant with MISRA C and more compatible with Polyspace. This example shows
you how to use the Model Advisor to check your model further before generating code.

For more checking before generating code, you can also run the Modeling Guidelines for
MISRA C:2012.

 Analyze Code and Test Software-in-the-Loop

2-17

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Guidelines for MISRA C:2012

advisor checks.

3 Click Run Selected Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until

the MISRA modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can now generate code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ > Build
This Subsystem.

2 Use the default settings for the tunable parameters and select Build.

2 Verification and Validation

2-18

3 After the code is generated, right-click Compute target speed and select Polyspace >
Options.

4 Click the Configure (Polyspace Bug Finder) button. This option allows you to choose
more advanced Polyspace analysis options in the Polyspace configuration window.

 Analyze Code and Test Software-in-the-Loop

2-19

5 On the same pane, select Calculate Code Metrics. This option turns on code metric
calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify

Code Generated For > Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and
defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment
shows you the results of the static code analysis. There are 50 MISRA C:2012 coding rule
violations in your generated code.

2 Verification and Validation

2-20

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOnOff. You can
annotate your code or your model to justify every result. But, because this model is a
unit in a larger program, you can also change the configuration of the analysis to
check only a subset of MISRA rules.

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from (Polyspace Bug Finder) option to Project configuration.

This option allows you to choose a subset of MISRA rules in the Polyspace
configuration.

4 Click the Configure button.
5 In the Polyspace Configuration window, on the Coding Rules & Code Metrics pane,

select the check box Check MISRA C:2012 and from the drop-down list, select

 Analyze Code and Test Software-in-the-Loop

2-21

single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules that are
applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

When the Polyspace environment reopens, there are no MISRA results, only code
metric results. The rules Polyspace showed previously were found because the model
was analyzed by itself. When you limited the rules Polyspace checked to the single-
unit subset, no violations were found.

2 Verification and Validation

2-22

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report.

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug

Finder)
• “Test Two Simulations for Equivalence” (Simulink Test)
• “Export Test Results and Generate Reports” (Simulink Test)

 See Also

2-23

Checking Systems Interactively

3

Check for Compliance Using the Model Advisor and Edit-
Time Checking

You can use the Model Advisor to check a model or subsystem for adherence to modeling
guidelines or standards. The Model Advisor includes checks that help you define and
implement consistent design guidelines. Using model checks, you can apply guidelines
across projects and development teams.

You can use the Model Advisor to check your model in these ways:

• Run checks interactively after you complete your model design.
• Configure the Model Advisor to check for violations while you edit.

The Model Advisor reviews your model for conditions and configuration settings that
cause inaccurate or inefficient simulation and code generation of the system that the
model represents.

Check Your Model Interactively
You can use the Model Advisor to check your model interactively against modeling
standards and guidelines. In the model window, select Analysis > Model Advisor >
Model Advisor. Select the model or system that you want to review. Select the checks
that you want to run on your model from the By Product or By Task folders. Then run
your selected checks. The Model Advisor reviews your model and, if selected, displays an
HTML report of your results.

Depending on which products you have installed, the Model Advisor includes different
checks.

For more information See
Checking model compliance with the
DO-178C safety standard

“Model Checks for DO-178C/DO-331
Standard Compliance” on page 3-40

Checking model compliance with the IEC
61508, IEC 62304, ISO 26262, or EN 50182
safety standards

“Model Checks for IEC 61508, IEC 62304,
ISO 26262, and EN 50128 Standard
Compliance” on page 3-54

3 Checking Systems Interactively

3-2

For more information See
Checking model compliance with
MathWorks Automotive Advisory Board
(MAAB) guidelines

“Model Checks for MathWorks Automotive
Advisory Board (MAAB) Guideline
Compliance” on page 3-61

Checking model compliance with the
MISRA C:2012 standard

“Model Checks for MISRA C:2012
Compliance” on page 3-84

Checking model compliance with CERT C,
CWE, and ISO/IEC TS 17961 secure coding
standards

“Model Checks for Secure Coding (CERT C,
CWE, and ISO/IEC TS 17961 Standards)”
on page 3-85

Checking requirements links “Model Checks for Requirements Links” on
page 3-86

Checking model metrics “Collect Model Metrics Using the Model
Advisor” on page 5-9

Check Your Model While You Edit
You can identify standards compliance issues earlier in the model design process by using
edit-time checking. Edit-time checking provides visual cues for some Model Advisor check
violations. In the model editor window, highlighted blocks alert you to issues as you
design your model. Hover your cursor over a highlighted block for information about the
violation.

Configure Your Model for Edit-Time Checking

To enable edit-time checking for Model Advisor checks, in the model window, select
Analysis > Model Advisor > Display Advisor Checks in Editor.

Once you select this option, the Model Advisor provides visual cues for several standards
compliance issues. To configure the selection and behavior of these checks:

1 To open a filtered view of the edit-time checks in the Model Advisor Configuration
Editor, in the model window, select Analysis > Model Advisor > Configure Advisor
Edit-Time Checks.

 Check for Compliance Using the Model Advisor and Edit-Time Checking

3-3

2 Use the configuration editor to enable, disable, or customize checks.
3 If you have made updates to check selection or behavior, save the current

configuration. Then select File > Set Current Configuration as Default.

Note Only the default configuration can change the behavior of edit-time checks.

To customize the behavior of edit-time checks, configure updates in the filtered view of
edit-time checks in the Model Advisor Configuration Editor. If a check appears in multiple
folders of your Model Advisor tree, for edit-time checking, Model Advisor assigns priority
to the check in your custom folder. If the check is not in your custom folder, priority goes
to the check in the By Task folder, and finally to the check in your By Product folder.

Locate Highlighted Compliance Issues in the Model Editor

Once you have configured edit-time checking, as you edit your model, highlighted blocks
alert you to compliance issues. Hover your cursor over a highlighted block and click the
error or warning icon.

3 Checking Systems Interactively

3-4

A dialog box provides a description of the warning. For detailed documentation on the
check that detected the issue, click the question mark. To ignore the warning for a block
and to add the block to the exclusion list for that check, click the Ignore button. For a
block violating multiple checks, cycle through the edit-time warnings with the << and >>
buttons. See “Exclude Checks During Edit-Time” on page 3-33.

Software is inherently complex and may not be completely free of errors. Model Advisor
checks might contain bugs. MathWorks reports known bugs brought to its attention on its
Bug Report system at https://www.mathworks.com/support/bugreports/. The bug reports
are an integral part of the documentation for each release. Examine periodically all bug
reports for a release as such reports may identify inconsistencies between the actual
behavior of a release you are using and the behavior described in this documentation.

 Check for Compliance Using the Model Advisor and Edit-Time Checking

3-5

https://www.mathworks.com/support/bugreports/

While applying Model Advisor checks to your model will increase the likelihood that your
model does not violate certain modeling standards or guidelines, it is ultimately your
responsibility to verify, using multiple methods, that the system being developed provides
its intended functionality and does not include any unintended functionality.

Check MAAB guideline compliance during Edit-Time for Stateflow

To check your Stateflow chart for compliance with the MAAB guidelines while you edit:

1 Open your model that contains Stateflow charts. For example, at the command
prompt, open sf_boiler.

2 To enable the edit-time MAAB checks, go to Analysis > Model Advisor > Display
Advisor checks in editor.

3 Open the Bang-Bang Controller chart by double-clicking it. The Model Advisor
highlights multiple states. Each highlighted state contains a MAAB warning. Hover
your cursor over the warning of the Off state to discover the issue.

3 Checking Systems Interactively

3-6

4 Select the warning. The Model Advisor indicates that there must be a new line after
en: to comply with the MAAB guidelines. Place your cursor after en: and press
Enter. A new line is added and the warning is cleared.

Current guidelines checked for Stateflow charts during edit-time are listed in this table:

Guideline Check
jc_0501: Format of entries in a State block Check entry formatting in State blocks

in Stateflow charts

mathworks.maab.jc_0501
db_0151: State machine patterns for
transition actions

Check transition actions in Stateflow
charts

mathworks.maab.db_0151
db_0132: Transitions in flow charts Check transition orientations in flow

charts

mathworks.maab.db_0132
db_0127: MATLAB commands in
Stateflow®

Check for MATLAB expressions in
Stateflow charts

mathworks.maab.db_0127

See Also

Related Examples
• “Select and Run Model Advisor Checks” (Simulink)

More About
• “Modeling Rules That Stateflow Detects During Edit Time” (Stateflow)
• “Select and Run Model Advisor Checks” (Simulink)
• “Model Advisor Limitations” (Simulink)

 See Also

3-7

Transform Model to Variant System

You can use the Model Transformer tool to improve model componentization by replacing
qualifying modeling patterns with Variant Source and Variant Subsystem blocks. The
Model Transformer reports the qualifying modeling patterns. You choose which modeling
patterns the tool replaces with a Variant Source block or Variant Subsystem block.

The Model Transformer can perform these transformations:

• If an If block connects to one or more If Action Subsystems and each one has one
outport, replace this modeling pattern with a subsystem and a Variant Source block.

• If an If block connects to an If Action Subsystem that does not have an outport or has
two or more outports, replace this modeling pattern with a Variant Subsystem block.

• If a Switch Case block connects to one or more Switch Case Action Subsystems and
each one has one outport, replace this modeling pattern with a subsystem and a
Variant Source block.

• If a Switch Case block connects to a Switch Case Action Subsystem that does not have
an outport or has two or more outports, replace this modeling pattern with a Variant
Subsystem block.

• Replace a Switch block with a Variant Source block.
• Replace a Multiport Switch block that has two or more data ports with a Variant

Source block.

For the Model Transformer tool to perform the transformation, the control input to
Multiport Switch or Switch blocks and the inputs to If or Switch Case blocks must be
either of the following:

• A Constant block in which the Constant value parameter is a Simulink.Parameter
object of scalar type.

• Constant blocks in which the Constant value parameters are Simulink.Parameter
objects of scalar type and some other combination of blocks that form a supported
MATLAB expression. The MATLAB expressions in “Operators and Operands in Variant
Condition Expressions” (Simulink) are supported except for bitwise operations.

Example Model
This example shows how to use the Model Transformer to transform a model into a
variant system. The example uses the model rtwdemo_controlflow_opt. This model

3 Checking Systems Interactively

3-8

has three Switch blocks. The control input to these Switch blocks is the
Simulink.Parameter cond. The Model Transformer dialog box and this example refer
to cond as a system constant.

1 Open the model. In the Command Window, type rtwdemo_controlflow_opt.
2 Open the Switch1 Block Parameters dialog box. Change the Threshold parameter

to 0. The Threshold parameter must be an integer because after the variant
transformation it is part of the condition expression in the Variant Source block.

3 Repeat step 2 for the Switch blocks Switch1, Switch2, and Switch3.
4 Save the model to your working folder.

 Transform Model to Variant System

3-9

Perform Variant Transform on Example Model
1 From the Model Editor, open the Model Transformer by selecting Analysis >

Refactor Model > Model Transformer. Or, in the Command Window, type:
mdltransformer('rtwdemo_controlflow_opt')

2 Select the check “Transform the model to variant system”.

3 Checking Systems Interactively

3-10

 Transform Model to Variant System

3-11

3 In the Specify system constant cell array field, you can specify a cell array of
character vectors consisting of Simulink.Parameters. The base workspace must
contain their definitions.

4 In the Prefix of transformed model name field, specify a prefix for the model
name. If you do not specify a prefix, the default is gen0.

5 Select Run This Check. The Model Transformer lists system constants and blocks
that qualify to be part of condition expressions in Variant Source or Variant
Subsystem blocks. For the Model Transformer to list a system constant, it must be a
Simulink.Parameter object of scalar type. For this example, Cond qualifies to part
of a condition expression.

6 If you do not want one of the transformations to occur, you can clear the check box
next to it.

7 Select Refactor Model. The Model Transformer provides a hyperlink to the
transformed model and hyperlinks to the corresponding blocks in the original model
and the transformed model.

The transformed model or models are in the folder that has the prefix m2m plus the
original model name. For this example, the folder name is
m2m_rtwdemo_controlflow_opt.

8 In the original model rtwdemo_controlflow_opt, right-click one of the Switch
blocks. In the menu, select Model Transformer > Traceability to Transformed
Block. In the transformed model gen0_rtwdemo_controlflow_opt, the
corresponding Variant Source block is highlighted.

9 In the transformed model gen0_rtwdemo_controlflow_opt, right-click one of the
Switch blocks. In the menu, select Model Transformer > Traceability to Original
Block. In the original model rtwdemo_controlflow_opt, the corresponding
Switch block is highlighted.

Model Transformation Limitations
The Model Transformer tool has these limitations:

• In order to run the Model Transformer on a model, you must be able to simulate the
model.

• If an If Action Subsystem block drives a Merge block, and the Merge block has
another inport that is either unconnected or driven by another conditional subsystem,
the Model Transformer does not add a Variant Source block. This modeling pattern
produces a warning and an excluded candidate message.

3 Checking Systems Interactively

3-12

• The Model Transformer cannot perform a variant transformation for every modeling
pattern. This list contains some exceptions:

• The model contains a protected model reference block.
• A model contains a Variant Source block with the Analyze all choices during

update diagram and generate preprocessor conditionals parameter set to
off.

• After you run one or more tasks, you cannot rerun the tasks because the Run this
Task and Run All buttons are deactivated. If you want to rerun a task, reset the
Model Transformer by right-clicking Model Transformer and selecting Reset.

• Do not change a model in the middle of a transformation. If you want to change the
model, close the Model Transformer, modify the model, and then reopen the Model
Transformer.

• For the hyperlinks in the Model Transformer to work, you must have the model to
which the links point to open.

See Also

Related Examples
• “Variant Systems” (Simulink)

 See Also

3-13

Enable Component Reuse by Using Clone Detection
Clones are modeling patterns that have identical block types and connections. The
Identify Modeling Clones tool identifies clones across referenced model boundaries. You
can use the Identify Modeling Clones tool to enable component reuse by creating library
blocks from subsystem clones and replacing the clones with links to those library blocks.
You can also use the tool to link to clones in an existing library.

To open the tool, in the Simulink Editor, select Analysis > Refactor Model > Identify
Modeling Clones.

Exact Clones Versus Similar Clones
There are two types of clones: exact clones and similar clones. Exact clones have identical
block types, connections, and parameter values. Similar clones have identical block types
and connections, but they can have different block parameter values. For example, the
value of a Gain block can be different in similar clones but must be the same in exact
clones.

Exact clones and similar clones can have these differences:

• Two clones can have a different sorted order.
• The length of signal lines and the location and size of blocks can be different if the

block connections are the same.
• Blocks and signals can have different names.

To detect only exact clones, for each check in the Identify Modeling Clones tool, set the
Maximum number of different parameters to 0 (default value). Increasing this
parameter value increases the number of similar clones that the tool can potentially
detect.

After you identify clones, you can replace them with links to library blocks. Similar clones
link to masked library subsystems.

Identify Exact and Similar Clones
This example shows how to use the Identify Modeling Clones tool to identify exact clones
and similar clones, and then replace them with links to library blocks.

3 Checking Systems Interactively

3-14

1 Open the model ex_clone_detection and the corresponding library
ex_clone_library. At the MATLAB® command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_clone_detection
ex_clone_library

 Enable Component Reuse by Using Clone Detection

3-15

2 Save the model to your working folder.
3 In the Simulink Editor, from the Analysis menu, select Refactor Model > Identify

Modeling Clones. To open the Identify Modeling Clones tool programmatically, at
the MATLAB command prompt, type: clonedetection('ex_clone_detection').

3 Checking Systems Interactively

3-16

4 Select the folder Replace clones with library block links. If you want to perform
all or some of the checks in the Identify Modeling Clones tool, you can click Run
Selected Checks. Selecting this option does not refactor the model. It only identifies
the clones. This example takes you through each check, one at a time.

Replace Clones of Library Blocks with Library Links

Identify modeling patterns that are graphical clones of a library subsystem. Graphical
clones can be in modeling regions that include inactive variants and commented-out
regions. If one clone has a link to a library block, the tool reports a missing link for the
other subsystem or subsystem clones. The tool also reports clones that do not have links
to library blocks. You choose whether to create a library block and replace a clone with a
link to that library block.

 Enable Component Reuse by Using Clone Detection

3-17

1 Select Replace clones of library blocks with library links.
2 In the Library file name field, specify the library ex_clone_library.
3 Leave the Maximum number of different parameters value as 0.
4 Click Run This Check. In the top Result table, the left column contains hyperlinks

to modeling clones. The right column contains hyperlinks to the corresponding
library subsystems. The Gain blocks G12, G13, and G14 and SS2 are clones of
libsubsystem.

5 Click Refactor Model.
6 In the bottom Result table, there is a message informing you that the model was

successfully refactored. The Refactor Model button is now unavailable, and the
Undo button is enabled.

7 The model now contains links to libsubsystem. To remove the linked library blocks,
click the Undo button. After you refactor, you can remove the latest changes to the
model by clicking the Undo button. Each time you refactor a model, the tool creates
a back-up model in the folder that has the prefix m2m_plus the model name.

Note The Identify Modeling Clones tool identifies clones that are similar to library
blocks. It does not refactor a model to replace similar clones with links to library blocks.

Replace Graphical Clones with Library Links

Now identify graphical subsystem clones and replace them with links to library blocks. If
you do not want to refactor a model to replace clones in inactive variants or commented-
out regions, you can skip this check and instead run the Replace functional clones
with library links check.

1 Select Replace graphical clones with library links.
2 In the New library file name field, specify a library name or use the default name.
3 Change the Maximum number of different parameters value to 2.
4 Click Run This Check. The top Result table contains separate groupings for exact

and similar clones. Exact Clone Group 1 contains hyperlinks to the subsystem
clones. SS1 and SS4. Similar Clone Group 1 contains hyperlinks to SS3 and
SS5. Similar Clone Group 2 contains hyperlinks to SS6 and SS7.

5 Click the + symbol to reveal the contents in the second row and second column of the
Result table. SS5 has one block and one parameter that is different from SS3. SS3 is
the baseline clone for comparison.

3 Checking Systems Interactively

3-18

6 Click Refactor Model.
7 In the bottom Result table, there is a message informing you that the model was

refactored. The Refactor Model button is now unavailable, and the Undo button is
enabled.

8 For each clone group, the refactored model contains links to library subsystems.
Similar Clone Group 1 and Similar Clone Group 2 link to masked library
subsystems.

Replace Functional Clones with Library Links

Identify functional subsystem clones and replace them with links to library blocks. If you
want to refactor a model to replace clones in active modeling regions and inactive
variants and commented-out regions, you can skip this check and instead run the
Replace graphical clones with library links check.

1 Select Replace functional clones with library links.
2 In the New library file name field, specify a name for the library or use the default

name.
3 Click Run This Check. The top Result table does not list new clones because the

Replace Graphical Clones with Library Links step identifies functional clones.

Save and View Clone Detection Reports
When the Identify Modeling Clones tool runs checks, it generates an HTML report of
check results. By default, the HTML report is in the slprj/modeladvisor/ folder. The
Identify Modeling Clones tool uses the slprj folder in the code generation folder to store
reports and other information. If the slprj folder does not exist in the code generation
folder, the Identify Modeling Clones tool creates it.

View the report in the Identify Modeling clones tool by clicking the link on the Replace
clones with library block links folder. Save the report to a new location by clicking the
Save As button and specifying a location.

Additional Information
• You can run the Identify Modeling Clones tool on a library.
• You can exclude Subsystem and Model Reference blocks from clone detection by right-

clicking the subsystem or Model Reference block and selecting Identify Modeling

 Enable Component Reuse by Using Clone Detection

3-19

Clones > Subsystem and its contents > Add to exclusions. For more information,
see “Exclude subsystems and referenced models from clone detection”.

• For additional practice using the Identify Modeling Clones tool, try the model
aero_dap3dof and the corresponding libraries aero_librcs and aero_libdap.

See Also

Related Examples
• “Libraries” (Simulink)
• “Generate Reusable Code from Library Subsystems Shared Across Models”

(Simulink Coder)

3 Checking Systems Interactively

3-20

matlab:aero_dap3dof
matlab:aero_librcs
matlab:aero_libdap

Improve Model Readability by Eliminating Local Data
Store Blocks

You can use the Model Transformer tool to improve model readability by replacing Data
Store Memory, Data Store Read, and Data Store Write blocks with either a direct signal
line, a Delay block, or a Merge block. For bus signals, the tool might also add Bus Creator
or Bus Selector blocks as part of the replacement. Replacing these blocks improves model
readability by making data dependency explicit. The Model Transformer creates a model
with these replacements. The new model has the same functionality as the existing model.

The Model Transformer can replace these data stores:

• For signals that are not buses, if a Data Store Read block executes before a Data Store
Write block, the tool replaces these blocks with a Delay block.

• For signals that are not buses, if a Data Store Write block executes before a Data Store
Read block, the tool replaces these blocks with a direct connection.

• For bus signals, if the write to bus elements executes before the read of the bus, the
tool replaces the Data Store Read and Data Store Write blocks with a direct
connection and a Bus Creator block.

• For bus signals, if the write to the bus executes before the read of bus elements, the
tool replaces the Data Store Read and Data Store Write blocks with a direct
connection and a Bus Selector block.

• For conditionally executed subsystems, the tool replaces the Data Store Read and Data
Store Write blocks with a direct connection and a Merge block. For models in which a
read/write pair crosses an If subsystem boundary and the Write block is inside the
subsystem, the tool might also add an Else subsystem block.

The Model Transformer tool eliminates only local data stores that Data Store Memory
blocks define. The tool does not eliminate global data stores. For the Data Store Memory
block, on the Signal Attributes tab in the block parameters dialog box, you must clear
the Data store name must resolve to Simulink signal object parameter.

Example Model
The model ex_data_store_elimination contains the two local data stores: B and A.
For data store B, there are two Data Store Read blocks and one Data Store Write block.
For data store A, there is one Data Store Write block and one Data Store Read block. The
red numbers represent the sorted execution order.

 Improve Model Readability by Eliminating Local Data Store Blocks

3-21

3 Checking Systems Interactively

3-22

Replace Data Store Blocks
Identify data store blocks that qualify for replacement. Then, create a model that replaces
these blocks with direct signal lines, Delay blocks, or Merge blocks.

1 Open the model ex_data_store_elimination. At the MATLAB command line,
enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))
ex_data_store_elimination

2 Save the model to your working folder.
3 In the Simulink Editor, from the Analysis menu, select Refactor Model > Model

Transformer. To open the Model Transformer programmatically, at the MATLAB
command prompt, type this command:
mdltransformer('ex_data_store_replacement').

4 In the Transformations folder, select the Eliminate data store blocks check.
5 In the Prefix of refactored model field, specify a prefix for the refactored model.
6 Click the Run This Check button. The top Result table contains hyperlinks to the

Data Store Memory blocks and the corresponding Data Store Read and Data Store
Write blocks that qualify for elimination.

7 Click the Refactor Model button. The bottom Result table contains a hyperlink to
the new model. The tool creates an m2m_ex_data_store_replacement folder. This
folder contains the gen_ex_data_store_replacement.slx model.

 Improve Model Readability by Eliminating Local Data Store Blocks

3-23

3 Checking Systems Interactively

3-24

For local data store A, gen_ex_bus_struct_in_code.slx contains a Delay block in
place of the Data Store Write block and a direct signal connection in place of the Data
Store Read block. For local data store B, gen_ex_bus_struct_in_code.slx contains a
direct signal connection from the Bias block to Out2.

Limitations
The Model Transformer does not replace Data Store Read and Write blocks that meet
these conditions:

• They cross boundaries of conditionally executed subsystems such as Enabled,
Triggered, or Function-Call subsystems and Stateflow Charts.

• They do not complete mutually exclusive branches of If-Action subsystems.
• They cross boundaries of variants.
• They have more than one input or output.
• They access part of an array.
• They execute at different rates.
• They are inside different instances of library subsystems and have a different relative

execution order.

See Also

Related Examples
• “Refactor Models”
• “Data Stores” (Simulink)
• “Data Stores in Generated Code” (Simulink Coder)

 See Also

3-25

Limit Model Checks

What Is a Model Advisor Exclusion?
To save time during model development and verification, you can limit the scope of a
Model Advisor analysis of your model. You can create a Model Advisor exclusion to
exclude blocks in the model from selected checks. You can exclude all or selected checks
from:

• Simulink blocks
• Stateflow® charts

Note Model Advisor does not support the exclusion of StateflowTruth Table blocks.

After you specify the blocks to exclude, Model Advisor uses the exclusion information to
exclude blocks from specified checks during analysis. By default, Model Advisor exclusion
information is stored in the model SLX file. Alternately, you can store the information in
an exclusion file.

To view exclusion information for the model, right-click in the model window or right-click
a block and select Model Advisor > Open Model Advisor Exclusion Editor. The Model
Advisor Exclusion Editor dialog box includes the following information for each exclusion.

3 Checking Systems Interactively

3-26

Field Description
Rationale A description of why this object is excluded from Model

Advisor checks. The rationale field is the only field that you
can edit.

Type Whether a specific block is excluded or all blocks of a given
type are excluded.

Value Name of excluded block or blocks.
Check ID (s) Names of checks for which the block exclusion applies.

Note If you comment out blocks, they are excluded from both simulation and Model
Advisor analysis.

Save Model Advisor Exclusions in a Model File
To save Model Advisor exclusions to the model SLX file, in the Model Advisor Exclusion
Editor dialog box, select Store exclusions in model file. When you open the model SLX
file, the model contains the exclusions.

 Limit Model Checks

3-27

Save Model Advisor Exclusions in Exclusion File
A Model Advisor exclusion file specifies the collection of blocks to exclude from specified
checks in an exclusion file. You can create exclusions and save them in an exclusion file.
To use an exclusion file, in the Model Advisor Exclusion Editor dialog box, clear Store
exclusions in model file. The Exclusion File field is enabled.

The Exclusion File contains the exclusion file name and location associated with the
model. You can use an exclusion file with several models. However, a model can have only
one exclusion file.

Unless you specify a different folder, the Model Advisor saves exclusion files in the
current folder. The default name for an exclusion file is
<model_name>_exclusions.xml.

If you create an exclusion file and save your model, you attach the exclusion file to your
model. Each time that you open the model, the blocks and checks specified in the
exclusion file are excluded from the analysis.

Create Model Advisor Exclusions
1 In the model window, right-click a block and select Model Advisor. Select the menu

option for the type of exclusion that you want to do.

To Select Model Advisor >
Exclude the block from
all checks.

Exclude block only > All Checks

Exclude all blocks of this
type from all checks.

Exclude all blocks with type <block_type> > All
Checks

Exclude the block from
selected checks.

• Exclude block only > Select Checks.
• In the Check Selector dialog box, select the

checks. Click OK.
Exclude all blocks of this
type from selected
checks.

• Exclude all blocks with type <block_type> >
Select Checks.

• In the Check Selector dialog box, select the
checks. Click OK.

3 Checking Systems Interactively

3-28

To Select Model Advisor >
Exclude the block from
all failed checks. After a
Model Advisor analysis,
this option is available.

Exclude block only > Only failed checks

Exclude all blocks of this
type from all failed
checks. After a Model
Advisor analysis, this
option is available.

Exclude all blocks with type <block_type> >
Only failed checks

Exclude the block from a
failed check. After a
Model Advisor analysis,
this option is available.

Exclude block only > <name of failed check>

Exclude all blocks of this
type from a failed check.
After a Model Advisor
analysis, this option is
available.

Exclude all blocks with type <block_type> >
<name of failed check>

2 In the Model Advisor Exclusion Editor dialog box, to:

• Store exclusions in model file, select Store exclusions in model file. Click OK or
Apply to create the exclusion.

• Save the information to an exclusion file, clear Store exclusions in model file.
Click OK or Apply. If this exclusion is the first one, a Save Exclusion File as dialog
box opens. In this dialog box, click Save to create a exclusion file with the default
name <model_name>_exclusions.xml in the current folder. Optionally, you can
select a different file name or location.

3 Optionally, if you want to change the exclusion file name or location:

a In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in
model file.

b In the Model Advisor Exclusion Editor dialog box, select Change.
c In the Change Exclusion File dialog box, select Save as.
d In the Save Exclusion File dialog box, navigate to the location that you want and

enter a file name. Click Save.

 Limit Model Checks

3-29

e In the Model Advisor Exclusion Editor dialog box, select OK or Apply to create
the exclusion and save the information to an exclusion file.

You can create as many Model Advisor exclusions as you want by right-clicking model
blocks and selecting Model Advisor. Each time that you create an exclusion, the Model
Advisor Exclusion Editor dialog box opens. In the Rationale field, you can specify a
reason for excluding blocks or checks from the Model Advisor analysis. The rationale is
useful to others who review your model.

If you create an exclusion file and save your model, you attach the exclusion file to your
model. Each time that you open the model, the blocks and checks specified in the
exclusion file are excluded from the analysis.

Review Model Advisor Exclusions
You can review the exclusions associated with your model. Before or after a Model
Advisor analysis, to view exclusions information:

• Right-click in the model window or right-click a block and select Model Advisor >
Open Model Advisor Exclusion Editor. The Model Advisor Exclusion Editor dialog
box lists the exclusions for your model.

• On the Model Advisor toolbar, select Settings > Preferences. In the Model Advisor
Preferences dialog box, select Show Exclusion tab. In the right pane of the Model
Advisor window, select the Exclusions tab to display checks that are excluded from
the Model Advisor analysis.

• In the model window, select Analysis > Model Advisor > Model Advisor to open the
Model Advisor.

1 On the Model Advisor window toolbar, select Highlighting > Highlight
Exclusions. By default, this menu option is selected.

2
In the Model Advisor window, click Enable highlighting ().

3 In the left pane of the Model Advisor window, select a check. The blocks excluded
from the check appear in the model window, highlighted in gray with a black
border.

After the Model Advisor analysis, you can view exclusion information for individual checks
in the:

3 Checking Systems Interactively

3-30

• HTML report. Before the analysis, in the Model Advisor window, make sure that you
select the Show report after run check box.

• Model Advisor window. In the left pane of the Model Advisor window, select By
Product > Simulink > < name of check >. If the By Product folder is not
displayed, select Show By Product Folder from the Settings > Preferences dialog
box.

If the check The HTML report and Model Advisor window
Has no exclusions rules
applied.

Show that no exclusions were applied to this check.

Does not support
exclusions.

Shows that the check does not support exclusions.

Is excluded from a block. Lists the check exclusion rules.

Manage Exclusions
Save Exclusions in a File
1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model

file and click OK or Apply. If this exclusion is the first one, a Save Exclusion File as
dialog box opens. In this dialog box, click Save to create an exclusion file with the
default name <model_name>_exclusions.xml in the current folder. Optionally, you
can select a different file name or location.

2 If you want to change the exclusion file name or location:

a In the Model Advisor Exclusion Editor dialog box, select Change.
b In the Change Exclusion File dialog box, select Save as.
c In the Save Exclusion File dialog box, navigate to the location that you want and

enter a file name. Click Save.
d In the Model Advisor Exclusion Editor dialog box, select OK or Apply to create

the exclusion and save the information in an exclusion file.

Load an Exclusion File

To load an existing exclusion file for use with your model:

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model
file. Click Change.

 Limit Model Checks

3-31

2 In the Change Exclusion File dialog box, click Load.
3 Navigate to the exclusion file that you want to use with your model. Select Open.
4 In the Model Advisor Exclusion Editor dialog box, click OK to associate the exclusion

file with your model.

Detach an Exclusion File

To detach an exclusion file associated with your model:

1 In the Model Advisor Exclusion Editor dialog box, clear Store exclusions in model
file. Click Change.

2 In the Change Exclusion File dialog box, click Detach.
3 In the Model Advisor Exclusion Editor dialog box, click OK.

Remove an Exclusion
1 In the Model Advisor Exclusion Editor dialog box, select the exclusions that you want

to remove.
2 Click Remove Exclusion.

Add a Rationale to an Exclusion

You can add text that describes why you excluded a particular block or blocks from
selected checks during Model Advisor analysis. A description is useful to others who
review your model.

1 In the Model Advisor Exclusion Editor dialog box, double-click the Rationale field for
the exclusion.

2 Delete the existing text.
3 Add the rationale for excluding this object.

Programmatically Specify an Exclusion File

You can use the MAModelExclusionFile method to programmatically specify the name
of an exclusion file.

1 Use get_param to obtain the model object. For example, for sldemo_mdladv:

mo = get_param('sldemo_mdladv','Object')
2 Use MAModelExclusionFile to specify the name of an exclusion file. For example,

to specify exclusion file my_exclusion.xml in S:\work:

3 Checking Systems Interactively

3-32

mo.MAModelExclusionFile = ['S:\work\','my_exclusion.xml']
3 Open the Model Advisor Exclusion Editor dialog box. The Exclusion File field

contains the specified exclusion file and path.

Edit-Time Exclusions
Exclude Checks During Edit-Time

While editing a model, you can exclude blocks from Model Advisor analysis. Applicable
Model Advisor exclusions specified through the Simulink Editor are also applied during
edit-time.

To exclude a block from Model Advisor analysis during edit-time:

1 From the command prompt, open sldemo_fuelsys.
2 Introduce a warning that is visible in edit-time checking. Add the number 9 to the

beginning of the Engine Speed block name. This number causes a violation in “Check
character usage in block names”.

3 In the menu bar, select Analysis > Model Advisor > Display Advisor Checks in
Editor. The Scope block flags the warning Block name has incorrect
characters.

 Limit Model Checks

3-33

4 To exclude the Engine Speed block from Model Advisor analysis, either:

a Right-click the block, select Model Advisor > Exclude block only > Select
checks, and select the check.

b Click the warning icon and click the Ignore button. For this block, clicking
Ignore adds an exclusion to Model Advisor analysis.

The block is excluded from Model Advisor analysis for that check and no longer displays a
highlight. You can repeat this process for further edit-time warnings.

Note The list of edit-time exclusions is shared between the Model Advisor and edit-time
checking.

3 Checking Systems Interactively

3-34

See Also

Related Examples
• “Limit Model Checks By Excluding Gain and Outport Blocks” on page 3-36
• “Exclude Blocks From Custom Checks” on page 7-70

More About
• “Select and Run Model Advisor Checks” (Simulink)

 See Also

3-35

Limit Model Checks By Excluding Gain and Outport
Blocks

This example shows how to exclude a Gain block and all Outport blocks from a Model
Advisor check during a Model Advisor analysis. By excluding individual blocks from
checks, you limit the scope of the analysis and might save time during model development
and verification.

1 At the MATLAB command line, type sldemo_mdladv.
2 From the model window, select Analysis > Model Advisor > Model Advisor to

open the Model Advisor.
3 A System Selector — Model Advisor dialog box opens. Click OK.
4 If the By Product folder is not displayed in the Model Advisor window, select Show

By Product Folder from the Settings > Preferences dialog box.
5 In the left pane of the Model Advisor window, expand By Product > Simulink.

Select the Show report after run check box to see an HTML report of check results
after you run the checks.

6 Run the selected checks by clicking the Run selected checks button. After the
Model Advisor runs the checks, an HTML report displays the check results in a
browser window. The check Identify unconnected lines, input ports, and output
ports triggers a warning.

7 In the left pane of the Model Advisor window, select the check By Product >
Simulink > Identify unconnected lines, input ports, and output ports.

8
In the Model Advisor window, click the Enable highlighting button ().

• The model window opens. The blocks causing the Identify unconnected lines,
input ports, and output ports check warning are highlighted in yellow.

3 Checking Systems Interactively

3-36

matlab:sldemo_mdladv

• The Model Advisor Highlighting window opens with a link to the Model Advisor
window. In the Model Advisor window, you can find more information about the
check results and how to fix the warning condition.

9 After reviewing the check results, exclude the Gain2 block from all Model Advisor
checks:

a In the model window, right-click the Gain2 block and select Model Advisor >
Exclude block only > All checks .

b In the Model Advisor Exclusion Editor dialog box, double-click in the first row of
the Rationale field, and enter Exclude gain block.

 Limit Model Checks By Excluding Gain and Outport Blocks

3-37

c Click OK to store the exclusion in the model file.
10 After reviewing the check results, exclude all Outport blocks from the Identify

unconnected lines, input ports, and output ports check:

a Right-click the Out4 block and select Model Advisor > Exclude all blocks of
type Outport > Identify unconnected lines, input ports, and output ports.

b In the Model Advisor Exclusion Editor dialog box, click OK to store the exclusion
in the model file.

11 In the left pane of the Model Advisor window, select By Product > Simulink and
then:

• Select the Show report after run check box.
• Click Run Selected Checks to run a Model Advisor analysis.

12 After the Model Advisor completes the analysis, you can view exclusion information
for the Identify unconnected lines, input ports, and output ports check in the:

• HTML report:

3 Checking Systems Interactively

3-38

• Model Advisor window. In the left pane of the Model Advisor window, select By
Product > Simulink > Identify unconnected lines, input ports, and output
ports.

13 Close sldemo_mdladv.

See Also

Related Examples
• “Exclude Blocks From Custom Checks” on page 7-70
• “Select and Run Model Advisor Checks” (Simulink)

More About
• “Limit Model Checks” on page 3-26
• “Select and Run Model Advisor Checks” (Simulink)

 See Also

3-39

Model Checks for DO-178C/DO-331 Standard Compliance
You can check that your model or subsystem complies with selected aspects of the
DO-178C safety standard by running the Model Advisor.

To check compliance with DO standards, open the Model Advisor and run the checks in
By Task > Modeling Standards for DO-178C/DO-331.

For information on the DO-178C Software Considerations in Airborne Systems and
Equipment Certification and related standards, see Radio Technical Commission for
Aeronautics (RTCA).

The table lists the DO-178C/DO-331 checks. Applicable guidelines are provided for checks
used in “High-Integrity System Modeling” (Simulink).

DO-178C/DO-331 Check
Display model version information
Check for Discrete-Time Integrator blocks with initial condition uncertainty
Check root model Inport block specifications
Identify unconnected lines, input ports, and output ports
Check usage of tunable parameters in blocks
Check for Strong Data Typing with Simulink I/O
Check for blocks that have constraints on tunable parameters
Identify questionable subsystem settings
Check bus signals treated as vectors
Check for potentially delayed function-call subsystem return values
Check usage of Merge blocks
Check Stateflow data objects with local scope
Check usage of exclusive and default states in state machines
Identify disabled library links
Identify parameterized library links
Identify unresolved library links
Check for model reference configuration mismatch

3 Checking Systems Interactively

3-40

https://www.rtca.org/
https://www.rtca.org/

DO-178C/DO-331 Check
Check for parameter tunability information ignored for referenced models
Identify requirement links that specify invalid locations within documents
Identify requirement links with missing documents
Identify requirement links with path type inconsistent with preferences
Identify selection-based links having descriptions that do not match their requirements
document text
Check sample times and tasking mode
Check solver for code generation
Check the hardware implementation
Display bug reports for DO Qualification Kit
Display bug reports for Embedded Coder
Display bug reports for Polyspace Code Prover
Display bug reports for Polyspace Bug Finder
Display bug reports for Simulink Code Inspector
Display bug reports for Simulink Report Generator
Display bug reports for Simulink Check
Display bug reports for Simulink Coverage
Display bug reports for Simulink Test
Display bug reports for Simulink Design Verifier

The following are the High-Integrity System Modeling checks that are applicable for the
DO-178C/DO-331 standards.

Model Checks for High Integrity Systems Modeling Checks
You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, open the Model
Advisor and run the checks in By Task > Modeling Standards for DO-178C/DO-331.

 Model Checks for DO-178C/DO-331 Standard Compliance

3-41

For information on the High Integrity System Model Software Considerations in Airborne
Systems and Equipment Certification and related standards, see Radio Technical
Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks. Applicable guidelines are
provided for checks used in “High-Integrity System Modeling” (Simulink).

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of lookup table blocks hisl_0033: Usage of Lookup Table blocks
Check for inconsistent vector indexing
methods

hisl_0021: Consistent vector indexing
method

Check for variant blocks with 'Generate
preprocessor conditionals' active

hisl_0023: Verification of model and
subsystem variants

Check for root Inports with missing
properties

hisl_0024: Inport interface definition

Check for Relational Operator blocks that
equate floating-point types

hisl_0017: Usage of blocks that compute
relational operators (2)

Check usage of Relational Operator blocks hisl_0016: Usage of blocks that compute
relational operators

Check usage of Logical Operator blocks hisl_0018: Usage of Logical Operator block
Check usage of While Iterator blocks hisl_0006: Usage of While Iterator blocks
Check sample time-dependent blocks hisl_0007: Usage of For Iterator or While

Iterator subsystems
Check usage of For Iterator blocks hisl_0008: Usage of For Iterator Blocks
Check usage of If blocks and If Action
Subsystem blocks

hisl_0010: Usage of If blocks and If Action
Subsystem blocks

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

hisl_0011: Usage of Switch Case blocks and
Action Subsystem blocks

Check safety-related optimization settings
for logic signals

hisl_0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)

3 Checking Systems Interactively

3-42

https://www.rtca.org/
https://www.rtca.org/

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related block reduction
optimization settings

hisl_0046: Configuration Parameters >
Simulation Target > Block reduction

Check safety-related optimization settings
for application lifespan

hisl_0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)

Check safety-related optimization settings
for data initialization

hisl_0052: Configuration Parameters >
Optimization > Data initialization

Check safety-related optimization settings
for data type conversions

hisl_0053: Configuration Parameters >
Optimization > Remove code from floating-
point to integer conversions that wraps out-
of-range values

Check safety-related optimization settings
for division arithmetic exceptions

hisl_0054: Configuration Parameters >
Optimization > Remove code that protects
against division arithmetic exceptions

Check safety-related code generation
settings for comments

hisl_0038: Configuration Parameters >
Code Generation > Comments

Check safety-related code generation
interface settings

hisl_0039: Configuration Parameters >
Code Generation > Interface

Check safety-related code generation
settings for code style

hisl_0047: Configuration Parameters >
Code Generation > Code Style

Check safety-related code generation
symbols settings

hisl_0049: Configuration Parameters >
Code Generation > Symbols

Check usage of Abs blocks hisl_0001: Usage of Abs block
Check usage of Math Function blocks (rem
and reciprocal functions)

hisl_0002: Usage of Math Function blocks
(rem and reciprocal)

Check usage of Math Function blocks (log
and log10 functions)

hisl_0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)

Check usage of Assignment blocks hisl_0029: Usage of Assignment blocks
Check usage of Signal Routing blocks hisl_0034: Usage of Signal Routing blocks
Check for root Inports with missing range
definitions

hisl_0025: Design min/max specification of
input interfaces

 Model Checks for DO-178C/DO-331 Standard Compliance

3-43

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check for root Outports with missing range
definitions

hisl_0026: Design min/max specification of
output interfaces

Check state machine type of Stateflow
charts

hisf_0001: State Machine Type

Check Stateflow charts for transition paths
that cross parallel state boundaries

hisf_0013: Usage of transition paths
(crossing parallel state boundaries)

Check Stateflow charts for ordering of
states and transitions

hisf_0002: User-specified state/transition
execution order

Check Stateflow debugging options hisf_0011: Stateflow debugging settings
Check Stateflow charts for uniquely defined
data objects

hisl_0061: Unique identifiers for clarity

Check Stateflow charts for strong data
typing

hisf_0015: Strong data typing (casting
variables and parameters in expressions)

Check usage of shift operations for
Stateflow data

hisf_0064: Shift operations for Stateflow
data to improve code compliance

Check assignment operations in Stateflow
charts

hisf_0065: Type cast operations in Stateflow
to improve code compliance

Check Stateflow charts for unary operators hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance

Check for Strong Data Typing with
Simulink I/O

hisf_0009: Strong data typing (Simulink and
Stateflow boundary)

Check for MATLAB Function interfaces with
inherited properties

himl_0002: Strong data typing at MATLAB
function boundaries

Check MATLAB Function metrics himl_0003: Limitation of MATLAB function
complexity

Check MATLAB Code Analyzer messages himl_0004: MATLAB Code Analyzer
recommendations for code generation

Check safety-related model referencing
settings

hisl_0037: Configuration Parameters >
Model Referencing

3 Checking Systems Interactively

3-44

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
solvers

hisl_0043: Configuration Parameters >
Diagnostics > Solver

Check safety-related solver settings for
simulation time

hisl_0040: Configuration Parameters >
Solver > Simulation time

Check safety-related solver settings for
solver options

hisl_0041: Configuration Parameters >
Solver > Solver options

Check safety-related solver settings for
tasking and sample-time

hisl_0042: Configuration Parameters >
Solver > Tasking and sample time options

Check safety-related diagnostic settings for
sample time

hisl_0044: Configuration Parameters >
Diagnostics > Sample Time

Check safety-related diagnostic settings for
parameters

hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters

Check safety-related diagnostic settings for
data used for debugging

hisl_0305: Configuration Parameters >
Diagnostics > Debugging

Check safety-related diagnostic settings for
data store memory

hisl_0013: Usage of data store blocks

Check safety-related diagnostic settings for
type conversions

hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion

Check safety-related diagnostic settings for
signal connectivity

hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals

Check safety-related diagnostic settings for
bus connectivity

hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses

Check safety-related diagnostic settings
that apply to function-call connectivity

hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls

Check safety-related diagnostic settings for
compatibility

hisl_0301: Configuration Parameters >
Diagnostics > Compatibility

Check safety-related diagnostic settings for
model initialization

hisl_0304: Configuration Parameters >
Diagnostics > Model initialization

Check safety-related diagnostic settings for
model referencing

hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing

 Model Checks for DO-178C/DO-331 Standard Compliance

3-45

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
saving

hisl_0036: Configuration Parameters >
Diagnostics > Saving

Check safety-related diagnostic settings for
Merge blocks

hisl_0303: Configuration Parameters >
Diagnostics > Merge block

Check safety-related diagnostic settings for
Stateflow

hisl_0311: Configuration Parameters >
Diagnostics > Stateflow

Check safety-related optimization settings
for Loop unrolling threshold

hisl_0051: Configuration Parameters >
Optimization > Loop unrolling threshold

Check model object names hisl_0032: Model object names
Check for model elements that do not link
to requirements

hisl_0070: Placement of requirement links
in a model

Check for inappropriate use of transition
paths

hisf_0014: Usage of transition paths
(passing through states)

Check usage of Bitwise Operator block hisl_0019: Usage of Bitwise Operator block
Check data types for blocks with index
signals

hisl_0022: Data type selection for index
signals

Check model file name hisl_0031: Model file names
Check if/elseif/else patterns in MATLAB
Function blocks

himl_0006: MATLAB code if / elseif / else
patterns

Check switch statements in MATLAB
Function blocks

himl_0007: MATLAB code switch / case /
otherwise patterns

Check global variables in graphical
functions

hisl_0062: Global variables in graphical
functions

Check for length of user-defined object
names

hisl_0063: Length of user-defined object
names to improve MISRA C:2012
compliance

Check usage of Merge blocks hisl_0015: Usage of Merge blocks
Check usage of conditionally executed
subsystems

hisl_0012: Usage of conditionally executed
subsystems

Check usage of standardized MATLAB
function headers

himl_0001: Usage of standardized MATLAB
function headers

3 Checking Systems Interactively

3-46

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of relational operators in
MATLAB Function blocks

himl_0008: MATLAB code relational
operator data types

Check usage of equality operators in
MATLAB Function blocks

himl_0009: MATLAB code with equal / not
equal relational operators

Check usage of logical operators and
functions in MATLAB Function blocks

himl_0010: MATLAB code with logical
operators and functions

Check naming of ports in Stateflow charts hisf_0016: Stateflow port names
Check scoping of Stateflow data objects hisf_0017: Stateflow data object scoping
Check usage of Gain blocks hisl_0066: Usage of Gain blocks
Check usage of bitwise operations in
Stateflow charts

hisf_0003: Usage of bitwise operations

Check data type of loop control variables hisl_0102: Data type of loop control
variables to improve MISRA C:2012
compliance

Check configuration parameters for MISRA
C:2012

hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

hisl_0020: Blocks not recommended for
MISRA C:2012 compliance

 Model Checks for DO-178C/DO-331 Standard Compliance

3-47

Model Checks for High Integrity Systems Modeling
Checks

You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, open the Model
Advisor and run the checks in By Task > Modeling Standards for DO-178C/DO-331.

For information on the High Integrity System Model Software Considerations in Airborne
Systems and Equipment Certification and related standards, see Radio Technical
Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks. Applicable guidelines are
provided for checks used in “High-Integrity System Modeling” (Simulink).

High Integrity Systems Modeling Checks
High Integrity System Model Check Applicable High-Integrity System

Modeling Guidelines
Check usage of lookup table blocks hisl_0033: Usage of Lookup Table blocks
Check for inconsistent vector indexing
methods

hisl_0021: Consistent vector indexing
method

Check for variant blocks with 'Generate
preprocessor conditionals' active

hisl_0023: Verification of model and
subsystem variants

Check for root Inports with missing
properties

hisl_0024: Inport interface definition

Check for Relational Operator blocks that
equate floating-point types

hisl_0017: Usage of blocks that compute
relational operators (2)

Check usage of Relational Operator blocks hisl_0016: Usage of blocks that compute
relational operators

Check usage of Logical Operator blocks hisl_0018: Usage of Logical Operator block
Check usage of While Iterator blocks hisl_0006: Usage of While Iterator blocks
Check sample time-dependent blocks hisl_0007: Usage of For Iterator or While

Iterator subsystems

3 Checking Systems Interactively

3-48

https://www.rtca.org/
https://www.rtca.org/

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of For Iterator blocks hisl_0008: Usage of For Iterator Blocks
Check usage of If blocks and If Action
Subsystem blocks

hisl_0010: Usage of If blocks and If Action
Subsystem blocks

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

hisl_0011: Usage of Switch Case blocks and
Action Subsystem blocks

Check safety-related optimization settings
for logic signals

hisl_0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)

Check safety-related block reduction
optimization settings

hisl_0046: Configuration Parameters >
Simulation Target > Block reduction

Check safety-related optimization settings
for application lifespan

hisl_0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)

Check safety-related optimization settings
for data initialization

hisl_0052: Configuration Parameters >
Optimization > Data initialization

Check safety-related optimization settings
for data type conversions

hisl_0053: Configuration Parameters >
Optimization > Remove code from floating-
point to integer conversions that wraps out-
of-range values

Check safety-related optimization settings
for division arithmetic exceptions

hisl_0054: Configuration Parameters >
Optimization > Remove code that protects
against division arithmetic exceptions

Check safety-related code generation
settings for comments

hisl_0038: Configuration Parameters >
Code Generation > Comments

Check safety-related code generation
interface settings

hisl_0039: Configuration Parameters >
Code Generation > Interface

Check safety-related code generation
settings for code style

hisl_0047: Configuration Parameters >
Code Generation > Code Style

Check safety-related code generation
symbols settings

hisl_0049: Configuration Parameters >
Code Generation > Symbols

Check usage of Abs blocks hisl_0001: Usage of Abs block

 Model Checks for High Integrity Systems Modeling Checks

3-49

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of Math Function blocks (rem
and reciprocal functions)

hisl_0002: Usage of Math Function blocks
(rem and reciprocal)

Check usage of Math Function blocks (log
and log10 functions)

hisl_0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)

Check usage of Assignment blocks hisl_0029: Usage of Assignment blocks
Check usage of Signal Routing blocks hisl_0034: Usage of Signal Routing blocks
Check for root Inports with missing range
definitions

hisl_0025: Design min/max specification of
input interfaces

Check for root Outports with missing range
definitions

hisl_0026: Design min/max specification of
output interfaces

Check state machine type of Stateflow
charts

hisf_0001: State Machine Type

Check Stateflow charts for transition paths
that cross parallel state boundaries

hisf_0013: Usage of transition paths
(crossing parallel state boundaries)

Check Stateflow charts for ordering of
states and transitions

hisf_0002: User-specified state/transition
execution order

Check Stateflow debugging options hisf_0011: Stateflow debugging settings
Check Stateflow charts for uniquely defined
data objects

hisl_0061: Unique identifiers for clarity

Check Stateflow charts for strong data
typing

hisf_0015: Strong data typing (casting
variables and parameters in expressions)

Check usage of shift operations for
Stateflow data

hisf_0064: Shift operations for Stateflow
data to improve code compliance

Check assignment operations in Stateflow
charts

hisf_0065: Type cast operations in Stateflow
to improve code compliance

Check Stateflow charts for unary operators hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance

Check for Strong Data Typing with
Simulink I/O

hisf_0009: Strong data typing (Simulink and
Stateflow boundary)

3 Checking Systems Interactively

3-50

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check for MATLAB Function interfaces with
inherited properties

himl_0002: Strong data typing at MATLAB
function boundaries

Check MATLAB Function metrics himl_0003: Limitation of MATLAB function
complexity

Check MATLAB Code Analyzer messages himl_0004: MATLAB Code Analyzer
recommendations for code generation

Check safety-related model referencing
settings

hisl_0037: Configuration Parameters >
Model Referencing

Check safety-related diagnostic settings for
solvers

hisl_0043: Configuration Parameters >
Diagnostics > Solver

Check safety-related solver settings for
simulation time

hisl_0040: Configuration Parameters >
Solver > Simulation time

Check safety-related solver settings for
solver options

hisl_0041: Configuration Parameters >
Solver > Solver options

Check safety-related solver settings for
tasking and sample-time

hisl_0042: Configuration Parameters >
Solver > Tasking and sample time options

Check safety-related diagnostic settings for
sample time

hisl_0044: Configuration Parameters >
Diagnostics > Sample Time

Check safety-related diagnostic settings for
parameters

hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters

Check safety-related diagnostic settings for
data used for debugging

hisl_0305: Configuration Parameters >
Diagnostics > Debugging

Check safety-related diagnostic settings for
data store memory

hisl_0013: Usage of data store blocks

Check safety-related diagnostic settings for
type conversions

hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion

Check safety-related diagnostic settings for
signal connectivity

hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals

Check safety-related diagnostic settings for
bus connectivity

hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses

 Model Checks for High Integrity Systems Modeling Checks

3-51

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings
that apply to function-call connectivity

hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls

Check safety-related diagnostic settings for
compatibility

hisl_0301: Configuration Parameters >
Diagnostics > Compatibility

Check safety-related diagnostic settings for
model initialization

hisl_0304: Configuration Parameters >
Diagnostics > Model initialization

Check safety-related diagnostic settings for
model referencing

hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing

Check safety-related diagnostic settings for
saving

hisl_0036: Configuration Parameters >
Diagnostics > Saving

Check safety-related diagnostic settings for
Merge blocks

hisl_0303: Configuration Parameters >
Diagnostics > Merge block

Check safety-related diagnostic settings for
Stateflow

hisl_0311: Configuration Parameters >
Diagnostics > Stateflow

Check safety-related optimization settings
for Loop unrolling threshold

hisl_0051: Configuration Parameters >
Optimization > Loop unrolling threshold

Check model object names hisl_0032: Model object names
Check for model elements that do not link
to requirements

hisl_0070: Placement of requirement links
in a model

Check for inappropriate use of transition
paths

hisf_0014: Usage of transition paths
(passing through states)

Check usage of Bitwise Operator block hisl_0019: Usage of Bitwise Operator block
Check data types for blocks with index
signals

hisl_0022: Data type selection for index
signals

Check model file name hisl_0031: Model file names
Check if/elseif/else patterns in MATLAB
Function blocks

himl_0006: MATLAB code if / elseif / else
patterns

Check switch statements in MATLAB
Function blocks

himl_0007: MATLAB code switch / case /
otherwise patterns

Check global variables in graphical
functions

hisl_0062: Global variables in graphical
functions

3 Checking Systems Interactively

3-52

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check for length of user-defined object
names

hisl_0063: Length of user-defined object
names to improve MISRA C:2012
compliance

Check usage of Merge blocks hisl_0015: Usage of Merge blocks
Check usage of conditionally executed
subsystems

hisl_0012: Usage of conditionally executed
subsystems

Check usage of standardized MATLAB
function headers

himl_0001: Usage of standardized MATLAB
function headers

Check usage of relational operators in
MATLAB Function blocks

himl_0008: MATLAB code relational
operator data types

Check usage of equality operators in
MATLAB Function blocks

himl_0009: MATLAB code with equal / not
equal relational operators

Check usage of logical operators and
functions in MATLAB Function blocks

himl_0010: MATLAB code with logical
operators and functions

Check naming of ports in Stateflow charts hisf_0016: Stateflow port names
Check scoping of Stateflow data objects hisf_0017: Stateflow data object scoping
Check usage of Gain blocks hisl_0066: Usage of Gain blocks
Check usage of bitwise operations in
Stateflow charts

hisf_0003: Usage of bitwise operations

Check data type of loop control variables hisl_0102: Data type of loop control
variables to improve MISRA C:2012
compliance

Check configuration parameters for MISRA
C:2012

hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

hisl_0020: Blocks not recommended for
MISRA C:2012 compliance

 Model Checks for High Integrity Systems Modeling Checks

3-53

Model Checks for IEC 61508, IEC 62304, ISO 26262, and
EN 50128 Standard Compliance

You can check that your model or subsystem complies with selected aspects of the
following safety standards by running the Model Advisor:

• IEC 61508-3 Functional safety of electrical/electronic/programmable electronic safety-
related systems - Part 3: Software requirements

• IEC 62304 Medical device software - Software life cycle processes
• ISO 26262-6 Road vehicles - Functional safety - Part 6: Product development: Software

level
• EN 50128 Railway applications - Communications, signalling and processing systems -

Software for railway control and protection systems

To check compliance with these standards, open the Model Advisor and run the checks in
these folders.

• By Task > Modeling Standards for IEC 61508
• By Task > Modeling Standards for IEC 62304
• By Task > Modeling Standards for ISO 26262
• By Task > Modeling Standards for EN 50128

The table lists the IEC 61508, IEC 62304, ISO 26262, and EN 50128 checks.

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks
Display configuration management data
Display model metrics and complexity report
Check for unconnected objects
Display bug reports for Embedded Coder
Display bug reports for IEC Certification Kit
Display bug reports for Polyspace Code Prover
Display bug reports for Polyspace Bug Finder
Display bug reports for Simulink Design Verifier
Display bug reports for Simulink Check

3 Checking Systems Interactively

3-54

IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks
Display bug reports for Simulink Coverage
Display bug reports for Simulink Test

Following are the High-Integrity System Modeling checks that are applicable for the IEC
61508, IEC 62304, ISO 26262, and EN 50128 standards.

Model Checks for High Integrity Systems Modeling Checks
You can check that your model or subsystem complies with selected aspects of the High
Integrity System Model safety standard by running the Model Advisor.

To check compliance with High Integrity System Model standards, open the Model
Advisor and run the checks in By Task > Modeling Standards for DO-178C/DO-331.

For information on the High Integrity System Model Software Considerations in Airborne
Systems and Equipment Certification and related standards, see Radio Technical
Commission for Aeronautics (RTCA).

The table lists the High Integrity System Model checks. Applicable guidelines are
provided for checks used in “High-Integrity System Modeling” (Simulink).

High Integrity Systems Modeling Checks

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of lookup table blocks hisl_0033: Usage of Lookup Table blocks
Check for inconsistent vector indexing
methods

hisl_0021: Consistent vector indexing
method

Check for variant blocks with 'Generate
preprocessor conditionals' active

hisl_0023: Verification of model and
subsystem variants

Check for root Inports with missing
properties

hisl_0024: Inport interface definition

Check for Relational Operator blocks that
equate floating-point types

hisl_0017: Usage of blocks that compute
relational operators (2)

Check usage of Relational Operator blocks hisl_0016: Usage of blocks that compute
relational operators

 Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

3-55

https://www.rtca.org/
https://www.rtca.org/

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check usage of Logical Operator blocks hisl_0018: Usage of Logical Operator block
Check usage of While Iterator blocks hisl_0006: Usage of While Iterator blocks
Check sample time-dependent blocks hisl_0007: Usage of For Iterator or While

Iterator subsystems
Check usage of For Iterator blocks hisl_0008: Usage of For Iterator Blocks
Check usage of If blocks and If Action
Subsystem blocks

hisl_0010: Usage of If blocks and If Action
Subsystem blocks

Check usage Switch Case blocks and
Switch Case Action Subsystem blocks

hisl_0011: Usage of Switch Case blocks and
Action Subsystem blocks

Check safety-related optimization settings
for logic signals

hisl_0045: Configuration Parameters >
Math and Data Types > Implement logic
signals as Boolean data (vs. double)

Check safety-related block reduction
optimization settings

hisl_0046: Configuration Parameters >
Simulation Target > Block reduction

Check safety-related optimization settings
for application lifespan

hisl_0048: Configuration Parameters >
Math and Data Types > Application lifespan
(days)

Check safety-related optimization settings
for data initialization

hisl_0052: Configuration Parameters >
Optimization > Data initialization

Check safety-related optimization settings
for data type conversions

hisl_0053: Configuration Parameters >
Optimization > Remove code from floating-
point to integer conversions that wraps out-
of-range values

Check safety-related optimization settings
for division arithmetic exceptions

hisl_0054: Configuration Parameters >
Optimization > Remove code that protects
against division arithmetic exceptions

Check safety-related code generation
settings for comments

hisl_0038: Configuration Parameters >
Code Generation > Comments

Check safety-related code generation
interface settings

hisl_0039: Configuration Parameters >
Code Generation > Interface

Check safety-related code generation
settings for code style

hisl_0047: Configuration Parameters >
Code Generation > Code Style

3 Checking Systems Interactively

3-56

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related code generation
symbols settings

hisl_0049: Configuration Parameters >
Code Generation > Symbols

Check usage of Abs blocks hisl_0001: Usage of Abs block
Check usage of Math Function blocks (rem
and reciprocal functions)

hisl_0002: Usage of Math Function blocks
(rem and reciprocal)

Check usage of Math Function blocks (log
and log10 functions)

hisl_0004: Usage of Math Function blocks
(natural logarithm and base 10 logarithm)

Check usage of Assignment blocks hisl_0029: Usage of Assignment blocks
Check usage of Signal Routing blocks hisl_0034: Usage of Signal Routing blocks
Check for root Inports with missing range
definitions

hisl_0025: Design min/max specification of
input interfaces

Check for root Outports with missing range
definitions

hisl_0026: Design min/max specification of
output interfaces

Check state machine type of Stateflow
charts

hisf_0001: State Machine Type

Check Stateflow charts for transition paths
that cross parallel state boundaries

hisf_0013: Usage of transition paths
(crossing parallel state boundaries)

Check Stateflow charts for ordering of
states and transitions

hisf_0002: User-specified state/transition
execution order

Check Stateflow debugging options hisf_0011: Stateflow debugging settings
Check Stateflow charts for uniquely defined
data objects

hisl_0061: Unique identifiers for clarity

Check Stateflow charts for strong data
typing

hisf_0015: Strong data typing (casting
variables and parameters in expressions)

Check usage of shift operations for
Stateflow data

hisf_0064: Shift operations for Stateflow
data to improve code compliance

Check assignment operations in Stateflow
charts

hisf_0065: Type cast operations in Stateflow
to improve code compliance

Check Stateflow charts for unary operators hisf_0211: Protect against use of unary
operators in Stateflow Charts to improve
code compliance

 Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

3-57

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check for Strong Data Typing with
Simulink I/O

hisf_0009: Strong data typing (Simulink and
Stateflow boundary)

Check for MATLAB Function interfaces with
inherited properties

himl_0002: Strong data typing at MATLAB
function boundaries

Check MATLAB Function metrics himl_0003: Limitation of MATLAB function
complexity

Check MATLAB Code Analyzer messages himl_0004: MATLAB Code Analyzer
recommendations for code generation

Check safety-related model referencing
settings

hisl_0037: Configuration Parameters >
Model Referencing

Check safety-related diagnostic settings for
solvers

hisl_0043: Configuration Parameters >
Diagnostics > Solver

Check safety-related solver settings for
simulation time

hisl_0040: Configuration Parameters >
Solver > Simulation time

Check safety-related solver settings for
solver options

hisl_0041: Configuration Parameters >
Solver > Solver options

Check safety-related solver settings for
tasking and sample-time

hisl_0042: Configuration Parameters >
Solver > Tasking and sample time options

Check safety-related diagnostic settings for
sample time

hisl_0044: Configuration Parameters >
Diagnostics > Sample Time

Check safety-related diagnostic settings for
parameters

hisl_0302: Configuration Parameters >
Diagnostics > Data Validity > Parameters

Check safety-related diagnostic settings for
data used for debugging

hisl_0305: Configuration Parameters >
Diagnostics > Debugging

Check safety-related diagnostic settings for
data store memory

hisl_0013: Usage of data store blocks

Check safety-related diagnostic settings for
type conversions

hisl_0309: Configuration Parameters >
Diagnostics > Type Conversion

Check safety-related diagnostic settings for
signal connectivity

hisl_0306: Configuration Parameters >
Diagnostics > Connectivity > Signals

3 Checking Systems Interactively

3-58

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check safety-related diagnostic settings for
bus connectivity

hisl_0307: Configuration Parameters >
Diagnostics > Connectivity > Buses

Check safety-related diagnostic settings
that apply to function-call connectivity

hisl_0308: Configuration Parameters >
Diagnostics > Connectivity > Function calls

Check safety-related diagnostic settings for
compatibility

hisl_0301: Configuration Parameters >
Diagnostics > Compatibility

Check safety-related diagnostic settings for
model initialization

hisl_0304: Configuration Parameters >
Diagnostics > Model initialization

Check safety-related diagnostic settings for
model referencing

hisl_0310: Configuration Parameters >
Diagnostics > Model Referencing

Check safety-related diagnostic settings for
saving

hisl_0036: Configuration Parameters >
Diagnostics > Saving

Check safety-related diagnostic settings for
Merge blocks

hisl_0303: Configuration Parameters >
Diagnostics > Merge block

Check safety-related diagnostic settings for
Stateflow

hisl_0311: Configuration Parameters >
Diagnostics > Stateflow

Check safety-related optimization settings
for Loop unrolling threshold

hisl_0051: Configuration Parameters >
Optimization > Loop unrolling threshold

Check model object names hisl_0032: Model object names
Check for model elements that do not link
to requirements

hisl_0070: Placement of requirement links
in a model

Check for inappropriate use of transition
paths

hisf_0014: Usage of transition paths
(passing through states)

Check usage of Bitwise Operator block hisl_0019: Usage of Bitwise Operator block
Check data types for blocks with index
signals

hisl_0022: Data type selection for index
signals

Check model file name hisl_0031: Model file names
Check if/elseif/else patterns in MATLAB
Function blocks

himl_0006: MATLAB code if / elseif / else
patterns

Check switch statements in MATLAB
Function blocks

himl_0007: MATLAB code switch / case /
otherwise patterns

 Model Checks for IEC 61508, IEC 62304, ISO 26262, and EN 50128 Standard Compliance

3-59

High Integrity System Model Check Applicable High-Integrity System
Modeling Guidelines

Check global variables in graphical
functions

hisl_0062: Global variables in graphical
functions

Check for length of user-defined object
names

hisl_0063: Length of user-defined object
names to improve MISRA C:2012
compliance

Check usage of Merge blocks hisl_0015: Usage of Merge blocks
Check usage of conditionally executed
subsystems

hisl_0012: Usage of conditionally executed
subsystems

Check usage of standardized MATLAB
function headers

himl_0001: Usage of standardized MATLAB
function headers

Check usage of relational operators in
MATLAB Function blocks

himl_0008: MATLAB code relational
operator data types

Check usage of equality operators in
MATLAB Function blocks

himl_0009: MATLAB code with equal / not
equal relational operators

Check usage of logical operators and
functions in MATLAB Function blocks

himl_0010: MATLAB code with logical
operators and functions

Check naming of ports in Stateflow charts hisf_0016: Stateflow port names
Check scoping of Stateflow data objects hisf_0017: Stateflow data object scoping
Check usage of Gain blocks hisl_0066: Usage of Gain blocks
Check usage of bitwise operations in
Stateflow charts

hisf_0003: Usage of bitwise operations

Check data type of loop control variables hisl_0102: Data type of loop control
variables to improve MISRA C:2012
compliance

Check configuration parameters for MISRA
C:2012

hisl_0060: Configuration parameters that
improve MISRA C:2012 compliance

Check for blocks not recommended for C/C
++ production code deployment

Check for blocks not recommended for
MISRA C:2012

hisl_0020: Blocks not recommended for
MISRA C:2012 compliance

3 Checking Systems Interactively

3-60

Model Checks for MathWorks Automotive Advisory
Board (MAAB) Guideline Compliance

You can check that your model or subsystem complies with MathWorks Automotive
Advisory Board (MAAB) Guidelines by running the Model Advisor. Navigate to By Task >
Modeling Standards for MAAB and run the checks.

The MAAB involves major automotive OEMs and suppliers in the process of evolving
MathWorks controls, simulation, and code generation products, including Simulink,
Stateflow, and Simulink Coder™. An important result of this collaboration has been the
MAAB Control Algorithm Modeling Guidelines.

For MAAB checks, you can control whether the Model Advisor looks under masks or
follows links. See “Set MAAB and JMAAB Checks to Look Under Masks or Follow Links”
on page 3-83.

The table lists the MAAB checks with the applicable MAAB Control Algorithm Modeling
guideline. For JMAAB checks, see “Model Checks for Japan MATLAB Automotive Advisory
Board (JMAAB) Guideline Compliance” on page 3-67.

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Naming
Conventions

Check file names ar_0001: Filenames
Check folder names ar_0002: Directory names
Check subsystem names jc_0201: Usable characters for

Subsystem names
Check port block names jc_0211: Usable characters for

Inport blocks and Outport blocks
Check character usage in signal
labels

jc_0221: Usable characters for
signal line names

Check character usage in block
names

jc_0231: Usable characters for
block names

 Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

3-61

https://www.mathworks.com/solutions/automotive/standards/maab.html

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check Simulink bus signal names na_0030: Usable characters for
Simulink Bus names

Model
Architecture

Check for mixing basic blocks and
subsystems

db_0143: Similar block types on
the model levels

Check unused ports in Variant
Subsystems

na_0020: Number of inputs to
variant subsystems

Check use of default variants na_0036: Default variant
Check use of single variable
variant conditionals

na_0037: Use of single variable
variant conditionals

Model
Configuration
Options

Check Implement logic signals as
Boolean data (vs. double)

jc_0011: Optimization parameters
for Boolean data types

Check model diagnostic
parameters

jc_0021: Model diagnostic settings

Simulink Check for Simulink diagrams using
nonstandard display attributes

na_0004: Simulink model
appearance

Check font formatting db_0043: Simulink font and font
size

Check positioning and
configuration of ports

db_0042: Port block in Simulink
models

Check visibility of block port
names

na_0005: Port block name visibility
in Simulink models

Check display for port blocks jc_0081: Icon display for Port
block

Check whether block names
appear below blocks

db_0142: Position of block names

Check the display attributes of
block names

jc_0061: Display of block names

Check position of Trigger and
Enable blocks

db_0146: Triggered, enabled,
conditional Subsystems

3 Checking Systems Interactively

3-62

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check for nondefault block
attributes

db_0140: Display of basic block
parameters

Check for matching port and
signal names

jm_0010: Port block names in
Simulink models

Check Trigger and Enable block
names

jc_0281: Naming of Trigger Port
block and Enable Port block

Check signal line labels na_0008: Display of labels on
signals

Check for propagated signal labels na_0009: Entry versus propagation
of signal labels

Check for unconnected ports and
signal lines

db_0081: Unconnected signals,
block inputs and block outputs

Check for prohibited blocks in
discrete controllers

jm_0001: Prohibited Simulink
standard blocks inside controllers

Check for prohibited sink blocks hd_0001: Prohibited Simulink
sinks

Check scope of From and Goto
blocks

na_0011: Scope of Goto and From
blocks

Check usage of Switch blocks jc_0141: Use of the Switch block
Check usage of Relational
Operator blocks

jc_0131: Use of Relational
Operator block

Check for indexing in blocks db_0112: Indexing
Check usage of buses and Mux
blocks

na_0010: Grouping data flows into
signals

Check usage of tunable
parameters in blocks

db_0110: Tunable parameters in
basic blocks

Check orientation of Subsystem
blocks

jc_0111: Direction of Subsystem

 Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

3-63

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check fundamental logical and
numerical operations

na_0002: Appropriate
implementation of fundamental
logical and numerical operations

Check usage of merge blocks na_0032: Use of merge blocks
Check logical expressions in 'If'
blocks

na_0003: Simple logical
expressions in If Condition block

Stateflow Check usage of exclusive and
default states in state machines

db_0137: States in state machines

Check transition orientations in
flow charts

db_0132: Transitions in flow
charts

Check entry formatting in State
blocks in Stateflow charts

jc_0501: Format of entries in a
State block

Check return value assignments in
Stateflow graphical functions

jc_0511: Setting the return value
from a graphical function

Check default transition placement
in Stateflow charts

jc_0531: Placement of the default
transition

Check for Strong Data Typing with
Simulink I/O

db_0122: Stateflow and Simulink
interface signals and parameters

Check Stateflow data objects with
local scope

db_0125: Scope of internal signals
and local auxiliary variables

Check usage of return values from
Stateflow graphical functions

jc_0521: Use of the return value
from graphical functions

Check for MATLAB expressions in
Stateflow charts

db_0127: MATLAB commands in
Stateflow

Check for pointers in Stateflow
charts

jm_0011: Pointers in Stateflow

Check for event broadcasts in
Stateflow charts

jm_0012: Event broadcasts

3 Checking Systems Interactively

3-64

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check transition actions in
Stateflow charts

db_0151: State machine patterns
for transition actions

Check for bitwise operations in
Stateflow charts

na_0001: Bitwise Stateflow
operators

Check usage of unary minus
operations in Stateflow charts

jc_0451: Use of unary minus on
unsigned integers in Stateflow

Check for comparison operations
in Stateflow charts

na_0013: Comparison operation in
Stateflow

Check usage of floating-point
expressions in Stateflow charts

jc_0481: Use of hard equality
comparisons for floating point
numbers in Stateflow

Check for names of Stateflow ports
and associated signals

db_0123: Stateflow port names

Check nested states in Stateflow
charts

na_0038: Levels in Stateflow
charts

Check use of Simulink in Stateflow
charts

na_0039: Use of Simulink in
Stateflow charts

Check number of Stateflow states
per container

na_0040: Number of states per
container

MATLAB
Functions and
Code

Check input and output settings of
MATLAB Functions

na_0034: MATLAB Function block
input/output settings

Check MATLAB Function metrics • na_0016: Source lines of
MATLAB Functions

• na_0018: Number of nested if/
else and case statement

Check MATLAB code for global
variables

na_0024: Global Variables

Check the number of function calls
in MATLAB Function blocks

na_0017: Number of called
function levels

 Model Checks for MathWorks Automotive Advisory Board (MAAB) Guideline Compliance

3-65

By Task >
Modeling
Standards for
MAAB
subfolder

Model Advisor Check Guideline from the MAAB
Control Algorithm Modeling
Guidelines, Version 3.0

Check usage of restricted variable
names

na_0019: Restricted Variable
Names

Check usage of character vector
inside MATLAB Function block

na_0021: Strings

Check usage of recommended
patterns for Switch/Case
statements

na_0022: Recommended patterns
for Switch/Case statements

See Also

Related Examples
• Select and Run Model Advisor Checks (Simulink)

3 Checking Systems Interactively

3-66

Model Checks for Japan MATLAB Automotive Advisory
Board (JMAAB) Guideline Compliance

You can check that your model or subsystem complies with Japan MATLAB Automotive
Advisory Board (JMAAB) guidelines by running the Model Advisor. Navigate to By Task >
Modeling Standards for JMAAB and run the checks.

The JMAAB involves major automotive OEMs and suppliers in the process of evolving
MathWorks controls, simulation, and code generation products, including Simulink,
Stateflow, and Simulink Coder. An important result of this collaboration has been the
Control Algorithm Modeling Guidelines (JMAAB), Version 4.01.

For JMAAB checks, you can control whether the Model Advisor looks under masks or
follows links. See “Set MAAB and JMAAB Checks to Look Under Masks or Follow Links”
on page 3-83.

The table lists the JMAAB checks with the applicable JMAAB Control Algorithm Modeling
guideline.

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Naming
Conventions

Check file names ar_0001:
Usable
characters for
file names

Check folder names ar_0002:
Usable
characters for
folder names

Check subsystem names jc_0201: Usable
characters for
Subsystem
names

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-67

https://www.mathworks.com/solutions/automotive/standards/maab.html

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check port block names jc_0211: Usable
characters for
Inport block
and Outport
block

Check character usage in signal labels jc_0222: Usable
characters for
signal line and
bus names

Check character usage in block names jc_0231: Usable
characters for
block names

Check usable characters for signal names and bus
names

jc_0222: Usable
characters for
signal line and
bus names

Check usable characters for parameter names jc_0232: Usable
characters for
parameter
names

Check length of model file name jc_0241: Length
restrictions for
file names

Check length of folder name at every level of model
path

jc_0242: Length
restrictions for
folder names

3 Checking Systems Interactively

3-68

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check length of subsystem names jc_0243: Length
restrictions for
subsystem
names

Check length of Inport and Outport names jc_0244: Length
restrictions for
Inport and
Outport names

Check length of signal and bus names jc_0245: Length
restrictions for
signal and bus
names

Check length of parameter names jc_0246: Length
restrictions for
parameter
names

Check length of block names jc_0247: Length
restrictions for
block names

Model
Architecture

Check for mixing basic blocks and subsystems db_0143:
Similar block
types on the
model levels

Model
Configuration
Options

Check Implement logic signals as Boolean data (vs.
double)

jc_0011:
Optimization
parameters for
Boolean data
types

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-69

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Simulink Check for Simulink diagrams using nonstandard
display attributes

na_0004:
Simulink model
appearance

Check font formatting db_0043:
Simulink font
and font size

Check positioning and configuration of ports db_0042: Port
block in
Simulink
models

Check whether block names appear below blocks db_0142:
Position of
block names

Check the display attributes of block names jc_0061:
Display of block
names

Check position of Trigger and Enable blocks db_0146:
Triggered,
enabled,
conditional
Subsystems

Check for nondefault block attributes db_0140:
Display of block
parameters

3 Checking Systems Interactively

3-70

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check Trigger and Enable block names jc_0281:
Naming of
Trigger Port
block and
Enable Port
block

Check signal line labels na_0008:
Display of
labels on
signals

Check for propagated signal labels na_0009: Entry
versus
propagation of
signal labels

Check for unconnected ports and signal lines db_0081:
Unconnected
signals, block
inputs and
block outputs

Check for prohibited blocks in discrete controllers jm_0001:
Prohibited
Simulink
standard blocks
inside
controllers

Check for prohibited sink blocks hd_0001:
Prohibited
Simulink sinks

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-71

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check usage of Switch blocks jc_0141: Use of
the Switch
block

Check usage of Relational Operator blocks jc_0131: Use of
Relational
Operator block

Check for indexing in blocks db_0112:
Indexing

Check usage of tunable parameters in blocks db_0110:
Tunable
parameters in
basic blocks

Check orientation of Subsystem blocks jc_0111:
Direction of
Subsystem

Check usage of Discrete-Time Integrator block jc_0627:
Guideline for
using the
Discrete-Time
Integrator
block

Check usage of fixed-point data type with non-zero
bias

jc_0643: Fixed-
point setting

Check input and output datatype for Switch blocks jc_0650: Block
input/output
data type with
switching
function

3 Checking Systems Interactively

3-72

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check signs of input signals in product blocks jc_0611: Input
signal sign
during product
block division

Check Signed Integer Division Rounding mode jc_0642:
Integer
rounding mode
setting

Check type setting by data objects jc_0644:
Guideline for
type setting

Check usage of the Saturation blocks jc_0628:
Guideline for
using the
Saturation
Block

Check usage of Merge block jc_0659: Usage
restrictions of
signal lines
inputted to
Merge block

Check usage of Memory and Unit Delay blocks jc_0623: Use of
Memory block
vs. Unit Delay
block

Check block orientation jc_0110:
Direction of
block

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-73

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check if blocks are shaded in the model jc_0604: Block
shading

Check operator order of Product blocks jc_0610:
Operator order
for Product
block

Check icon shape of Logical Operator blocks jc_0621:
Guideline for
using the
Logical
Operator block

Check if tunable block parameters are defined as
named constants

jc_0645: Named
constant setting

Check default/else case in Switch Case blocks and If
blocks

jc_0656:
Guideline for
using the
Conditional
Control block

Check usage of Lookup Tables jc_0626:
Guideline for
using the
Lookup Table
system block

Check for parentheses in Fcn block expressions jc_0622:
Guideline for
using the Fcn
block

3 Checking Systems Interactively

3-74

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check undefined initial output for conditional
subsystems

jc_0640:
Detection of
undefined
initial output

Stateflow Check transition orientations in flow charts db_0132:
Transitions in
Flow Charts

Check return value assignments of graphical
functions in Stateflow charts

jc_0511:
Setting the
return value
from a
graphical
function

Check default transition placement in Stateflow
charts

jc_0531:
Placement of
the default
transition

Check for Strong Data Typing with Simulink I/O db_0122:
Stateflow and
Simulink
interface
signals and
parameters

Check Stateflow data objects with local scope db_0125: Scope
of internal
signals and
local auxiliary
variables

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-75

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check usage of return values from a graphical
function in Stateflow charts

jc_0521: Use of
the return value
from graphical
functions

Check for MATLAB expressions in Stateflow charts db_0127:
MATLAB
commands in
Stateflow

Check for pointers in Stateflow charts jm_0011:
Pointers in
Stateflow

Check for event broadcasts in Stateflow charts jm_0012: Event
broadcasts

Check transition actions in Stateflow charts db_0151: State
machine
patterns for
transition
actions

Check for bitwise operations in Stateflow charts na_0001:
Bitwise
Stateflow
operators

Check for unary minus operations on unsigned
integers in Stateflow charts

jc_0451: Use of
unary minus on
unsigned
integers in
Stateflow

3 Checking Systems Interactively

3-76

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check for comparison operations in Stateflow charts na_0013:
Comparison
operation in
Stateflow

Check for names of Stateflow ports and associated
signals

db_0123:
Stateflow port
names

Check uniform spaces before and after operators jc_0737:
Uniform spaces
before and after
operators

Check comments in state actions jc_0738:
Guidelines for
writing
comments in
state actions

Check prohibited comparison operation of logical
type signals

jc_0655:
Prohibited
comparison
operation of
logical type
signal in
Stateflow

Check usage of internal transitions in Stateflow states jc_0763: Usage
restrictions of
multiple
internal
transitions

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-77

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check usage of transition conditions in Stateflow
transitions

jc_0772:
Execution order
and transition
conditions of
transition lines

Check uniqueness of Stateflow State and Data names jc_0732:
Distinction
between state
name and data
item name

Check uniqueness of State names jc_0730:
Independence
of state name in
charts

Check if each action in state label ends with a
semicolon

jc_0735:
Semicolons in
state label

Check usage of parentheses in Stateflow transitions jc_0752:
Parentheses of
condition
actions

Check condition actions in Stateflow transitions jc_0743:
Guidelines for
writing
condition
actions

3 Checking Systems Interactively

3-78

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check prohibited use of operation expressions in
array indices

jc_0756:
Prohibited use
of operation
expressions in
array indexes

Check prohibited combination of state action and flow
chart

jc_0762:
Prohibited
combination of
state action and
Flow Chart

Check condition actions and transition actions in
Stateflow

jc_0753:
Condition
actions and
transition
actions in
Stateflow

Check first index of arrays in Stateflow jc_0701: Usable
numbers in first
index

Check usage of State names jc_0731: Slash
(/) in the state
name

Check execution timing for default transition path jc_0712:
Execution
timing for
default
transition path

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-79

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check repetition of Action types jc_0734:
Number of
state action
types

Check for unused data in Stateflow Charts jc_0700:
Unused data in
Stateflow block

Check updates to variables used in state transition
conditions

jc_0741: Timing
to update the
variables used
in the state's
transition
conditions

Check boolean operations in condition labels jc_0742:
Guidelines for
writing Boolean
operations in
condition labels

Check starting point of internal transition in
Stateflow

jc_0760:
Starting point
of internal
transition in
Stateflow

Check for parallel Stateflow state used for grouping jc_0721:
Guidelines for
using parallel
states

3 Checking Systems Interactively

3-80

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check scope of data in parallel states jc_0722:
Guidelines for
setting local
variables in
parallel states

Check indentation of Stateflow blocks jc_0736:
Uniform
indentations in
Stateflow
blocks

Check for unexpected backtracking in state
transitions

jc_0751 :
Backtracking
prevention in
state transition

MATLAB
Function

Check input and output settings of MATLAB
Functions

na_0034:
MATLAB
Function block
input/output
settings

Check MATLAB Function metrics na_0016:
Source lines of
MATLAB
Functions

na_0018:
Number of
nested if/else
and case
statement

 Model Checks for Japan MATLAB Automotive Advisory Board (JMAAB) Guideline Compliance

3-81

By Task >
Modeling
Standards for
JMAAB
subfolder

Model Advisor Check Guideline
from the
JMAAB Control
Algorithm
Modeling
Guidelines,
Version 4.01

Check MATLAB code for global variables na_0024: Global
variable

See Also

Related Examples
• Select and Run Model Advisor Checks (Simulink)

3 Checking Systems Interactively

3-82

Set MAAB and JMAAB Checks to Look Under Masks or
Follow Links

Control Whether Checks Look Under Masks or Follow Links
You can define whether MAAB and JMAAB checks look under masks or follow links. These
checks are available in the Model Advisor at:

• By Task > Modeling Standards for MAAB > Simulink
• By Task > Modeling Standards for JMAAB > Simulink

To customize a check to look under masks or follow links for an open model:

1 Navigate to Model Advisor > Settings > Open Configuration Editor.
2 Select By Task > Model Standards for MAAB > Simulink > Check for Simulink

diagrams using nonstandard display attributes.
3 On the right pane, under Input Parameters, you can specify to either Follow links

or Look under masks

4 For the Follow links or Look under masks settings to take effect, you must save
the configuration file (File > Save As), close the Configuration Editor, and load the
saved configuration file in the Model Advisor from Settings > Load Configuration.

For more information on options for each parameter, see find_system.

See Also
find_system

More About
• “Select and Run Model Advisor Checks” (Simulink)

 Set MAAB and JMAAB Checks to Look Under Masks or Follow Links

3-83

Model Checks for MISRA C:2012 Compliance
You can check that your model or subsystem has a likelihood of generating MISRA C:2012
compliant code. Navigate to By Task > Modeling Guidelines for MISRA C:2012 and
run the checks:

• Check usage of Assignment blocks
• Check for blocks not recommended for MISRA C:2012
• Check for unsupported block names
• Check configuration parameters for MISRA C:2012
• Check for equality and inequality operations on floating-point values
• Check for bitwise operations on signed integers
• Check for recursive function calls
• Check for switch case expressions without a default case
• Check for blocks not recommended for C/C++ production code deployment
• Check for missing error ports for AUTOSAR receiver interfaces
• Check for missing const qualifiers in model functions
• Check integer word length
• Check bus object names that are used as bus element names

See Also

Related Examples
• “Select and Run Model Advisor Checks” (Simulink)

3 Checking Systems Interactively

3-84

Model Checks for Secure Coding (CERT C, CWE, and
ISO/IEC TS 17961 Standards)

You can check that your code complies with the CERT C, CWE, and ISO/IEC TS 17961
(Embedded Coder) secure coding standards. Navigate to By Task > Modeling
Guidelines for secure coding standards (CERT C, CWE, ISO/IEC TS 17961) and run
the checks:

• Check configuration parameters for secure coding standards
• Check for blocks not recommended for C/C++ production code deployment
• Check for blocks not recommended for secure coding standards
• Check usage of Assignment blocks
• Check for switch case expressions without a default case
• Check for bitwise operations on signed integers
• Check for equality and inequality operations on floating-point values
• Check integer word length
• Detect Dead Logic
• Detect Integer Overflow
• Detect Division by Zero
• Detect Out Of Bound Array Access
• Detect Violation of Specified Minimum and Maximum Values

See Also

Related Examples
• “Select and Run Model Advisor Checks” (Simulink)

 Model Checks for Secure Coding (CERT C, CWE, and ISO/IEC TS 17961 Standards)

3-85

Model Checks for Requirements Links
To check that every requirements link in your model has a valid target in a requirements
document, navigate to Analysis > Requirements Traceability > Check Consistency
and run the Model Advisor checks:

• Identify requirement links with missing documents
• Identify requirement links that specify invalid locations within documents
• Identify selection-based links having descriptions that do not match their

requirements document text
• Identify requirement links with path type inconsistent with preferences

To execute these checks from the Model Advisor, navigate to By Product > Simulink
Requirements > Requirements Consistency.

When modeling for high-integrity systems, to check that model elements link to
requirement documents, run Check for model elements that do not link to requirements.

See Also

Related Examples
• “Validate Requirements Links in a Model” (Simulink Requirements)
• “Select and Run Model Advisor Checks” (Simulink)
• “High-Integrity System Modeling” (Simulink)

3 Checking Systems Interactively

3-86

Generate Model Advisor Reports in Adobe PDF and
Microsoft Word Formats

By default, when the Model Advisor runs checks, it generates an HTML report of check
results in the slprj/modeladvisor/model_name folder. On Windows® platforms, you
can generate Model Advisor reports in Adobe® PDF and Microsoft Word .docx formats.

The beginning of the PDF and Microsoft Word versions of the Model Advisor reports
contain the:

• Model name
• Simulink version
• System
• Treat as Referenced Model
• Model version
• Current run

To generate a Model Advisor report in Adobe PDF or Microsoft Word:

1 In the Model Advisor window, navigate to the folder that contains the checks that you
ran.

2 Select the folder. The right pane of the Model Advisor window displays information
about that folder. The pane includes a Report box.

3 In the Report box, click Generate Report.
4 In the Generate Model Advisor Report dialog box, enter the path to the folder where

you want to generate the report. Provide a file name.
5 In the Generate Model Advisor Report dialog box File format field, select PDF or

Word.
6 Click OK. The Model Advisor generates the report in PDF or Microsoft Word format

to the location that you specified.

Modify Default Template
If you have a MATLAB Report Generator license, you can modify the default template that
the Model Advisor uses to generate the report in PDF or Microsoft Word.

 Generate Model Advisor Reports in Adobe PDF and Microsoft Word Formats

3-87

The default template contains holes that the Model Advisor uses to populate the
generated report with information about the analysis. If you want your Model Advisor
report to contain the analysis information, do not delete the holes. When the Model
Advisor uses the template to generate the report, analysis information overrides the text
that you enter in the template hole field.

Template Hole In generated report, displays
ModelName Model name
SimulinkVersion Simulink version
SystemName System name
TreatAsMdlRef Whether or not model is treated as a referenced model
ModelVersion Model version
CurrentRun Model Advisor analysis time stamp
PassCount Number of checks that pass
FailCount Number of checks that fail
WarningCount Number of checks that cause a warning
NrunCount Number of checks that did not run
TotalCount Total number of checks
CheckResults Results for each check

This example shows how to add a header to a PDF version of a Model Advisor report.

1 Using Microsoft Word, open the default template matlabroot/toolbox/
simulink/simulink/modeladvisor/resources/templates/default.dotx.

2 Rename and save the template default.dotx to a writable location. For example,
save template default.dotx to C:/work/ma_format/mytemplate.dotx.

3 In the template C:/work/ma_format/mytemplate.dotx file, add a header. For
example, in the template header, add the text My Custom Header. Save the
template as a Microsoft Word .dotx file.

3 Checking Systems Interactively

3-88

4 In the Model Advisor window Report pane, click Generate Report.
5 In the Generate Model Advisor Report dialog box:

• Enter the path to the folder where you want to generate the report and provide a
file name.

• Set File format to PDF.
• Select View report after generation.
• Set Report template to C:\work\ma_format\mytemplate.dotx.

6 Click OK. The Model Advisor generates the report in PDF format with a custom
header. Because the template mytemplate.dotx contains holes that Model Advisor
uses to populate the generated report, the report contains information about the
Model Advisor analysis. For example, the report contains the model name, model
version, and number of checks that pass.

 Generate Model Advisor Reports in Adobe PDF and Microsoft Word Formats

3-89

See Also

Related Examples
• “Save and View Model Advisor Reports” (Simulink)
• “Customize Microsoft Word Component Templates” (MATLAB Report Generator)
• “Select and Run Model Advisor Checks” (Simulink)

3 Checking Systems Interactively

3-90

Check Systems Programmatically

4

Checking Systems Programmatically
The Simulink Check product includes a programmable interface for scripting and for
command-line interaction with the Model Advisor. Using this interface, you can:

• Create scripts and functions for distribution that check one or more systems using the
Model Advisor.

• Run the Model Advisor on multiple systems in parallel on multicore machines
(requires a Parallel Computing Toolbox™ license).

• Check one or more systems using the Model Advisor from the command line.
• Archive results for reviewing at a later time.

To define the workflow for running multiple checks on systems:

1 Specify a list of checks to run. Do one of the following:

• Create a Model Advisor configuration file that includes only the checks that you
want to run.

• Create a list of check IDs.
2 Specify a list of systems to check.
3 Run the Model Advisor checks on the list of systems using the ModelAdvisor.run

function.
4 Archive and review the results of the run.

See Also
ModelAdvisor.run

Related Examples
• “Archive and View Results” on page 4-10
• “Find Check IDs” on page 4-3

More About
• “Organize Checks and Folders Using the Model Advisor Configuration Editor” on

page 8-5

4 Check Systems Programmatically

4-2

Find Check IDs
An ID is a unique identifier for a Model Advisor check. You find check IDs in the Model
Advisor, using check context menus.

To Find Do This
Check Title, ID, or location
of the MATLAB source code

1 On the model window toolbar, select Settings > Preferences.
2 In the Model Advisor Preferences dialog box, select Show

Source Tab.
3 In the right pane of the Model Advisor window, click the Source

tab. The Model Advisor window displays the check Title, TitleId,
and location of the MATLAB source code for the check.

Check ID 1 In the left pane of the Model Advisor, select the check.
2 Right-click the check name and select Send Check ID to

Workspace. The ID is displayed in the Command Window and
sent to the base workspace.

Check IDs for selected
checks in a folder

1 In the left pane of the Model Advisor, select the checks for which
you want IDs. Clear the other checks in the folder.

2 Right-click the folder and select Send Check ID to Workspace.
An array of the selected check IDs are sent to the base
workspace.

If you know a check ID from a previous release, you can find the current check ID using
the ModelAdvisor.lookupCheckID function. For example, the check ID for By
Product > Simulink Check > Modeling Standards > DO-178C/DO-331 Checks >
Check safety-related optimization settings prior to Release 2010b was
DO178B:OptionSet. Using the ModelAdvisor.lookupCheckID function returns:

>> NewID = ModelAdvisor.lookupCheckID('DO178B:OptionSet')

NewID =

mathworks.do178.OptionSet

Note If the By Product folder is not displayed in the Model Advisor window, select Show
By Product Folder from the Settings > Preferences dialog box.

 Find Check IDs

4-3

See Also
ModelAdvisor.lookupCheckID

4 Check Systems Programmatically

4-4

Create a Function for Checking Multiple Systems
The following tutorial guides you through creating and testing a function to run multiple
checks on any model. The function returns the number of failures and warnings.

1 In the MATLAB window, select New > Function.
2 Save the function as run_configuration.m.
3 In the MATLAB Editor, specify [output_args] as [fail, warn].
4 Rename the function run_configuration.
5 Specify input_args to SysList.
6 Inside the function, specify the list of checks to run using the example Model Advisor

configuration file:
fileName = 'slvnvdemo_mdladv_config.mat';

7 Call the ModelAdvisor.run function:
SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

8 Determine the number of checks that return warnings and failures:
fail=0;
warn=0;

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;
end

The function should now look like this:
function [fail, warn] = run_configuration(SysList)
%RUN_CONFIGURATION Check systems with Model Advisor
% Check systems given as input and return number of warnings and
% failures.

fileName = 'slvnvdemo_mdladv_config.mat';
fail=0;
warn=0;

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;
end

end

 Create a Function for Checking Multiple Systems

4-5

9 Save the function.
10 Test the function. In the MATLAB Command Window, run run_configuration.m on

the sldemo_auto_climatecontrol/Heater Control subsystem:
[failures, warnings] = run_configuration(...
 'sldemo_auto_climatecontrol/Heater Control');

11 Review the results. Click the Summary Report link to open the Model Advisor
Command-Line Summary report.

See Also
ModelAdvisor.run

Related Examples
• “Check Multiple Systems in Parallel” on page 4-7
• “Create a Function for Checking Multiple Systems in Parallel” on page 4-8

4 Check Systems Programmatically

4-6

Check Multiple Systems in Parallel
Checking multiple systems in parallel reduces the processing time required by the Model
Advisor to check multiple systems. If you have the Parallel Computing Toolbox license,
you can check multiple systems in parallel on a multicore host machine.

The Parallel Computing Toolbox does not support 32-bit Windows machines.

Each parallel process runs checks on one model at a time. In parallel mode, load the
model data from the model workspace or data dictionary. The Model Advisor in parallel
mode does not support model data in the base workspace.

To enable parallel processing, use the ModelAdvisor.run function with
'ParallelMode' set to 'On'. By default, 'ParallelMode' is set to 'Off'. When you
use ModelAdvisor.run with 'ParallelMode' set to 'On', MATLAB creates a parallel
pool.

See Also
ModelAdvisor.run

Related Examples
• “Create a Function for Checking Multiple Systems in Parallel” on page 4-8

 Check Multiple Systems in Parallel

4-7

Create a Function for Checking Multiple Systems in
Parallel

If you have a Parallel Computing Toolbox license and a multicore host machine, you can
create the following function to check multiple systems in parallel:

1 Create the run_configuration function.
2 Save the function as run_fast_configuration.m.
3 In the Editor, change the name of the function to run_fast_configuration.
4 In the ModelAdvisor.run function, set 'ParallelMode' to 'On' . When you use

ModelAdvisor.run with 'ParallelMode' set to 'On', MATLAB automatically
creates a parallel pool.
SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName,...
 'ParallelMode','On');

The function should now look like this:
function [fail, warn] = run_fast_configuration(SysList)
%RUN_FAST_CONFIGURATION Check systems in parallel with Model Advisor
% Return number of warnings and failures.
fileName = 'slvnvdemo_mdladv_config.mat';
fail=0;
warn=0;

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName,...
 'ParallelMode','On');

for i=1:length(SysResultObjArray)
 fail = fail + SysResultObjArray{i}.numFail;
 warn = warn + SysResultObjArray{i}.numWarn;
end

end

5 Save the function.
6 Test the function. In the MATLAB Command Window, create a list of systems:

SysList={'sldemo_auto_climatecontrol/Heater Control',...
 'sldemo_auto_climatecontrol/AC Control','rtwdemo_iec61508'};

7 Run run_fast_configuration on the list of systems:
[failures, warnings] = run_fast_configuration(SysList);

8 Review the results. Click the Summary Report link to open the Model Advisor
Command-Line Summary report.

4 Check Systems Programmatically

4-8

See Also
ModelAdvisor.run

Related Examples
• “Check Multiple Systems in Parallel” on page 4-7

 See Also

4-9

Archive and View Results

Archive Results
After you run the Model Advisor programmatically, you can archive the results. The
ModelAdvisor.run function returns a cell array of ModelAdvisor.SystemResult
objects, one for each system run. If you save the objects, you can use them to view the
results at a later time without rerunning the Model Advisor.

View Results in Command Window
When you run the Model Advisor programmatically, the system-level results of the run are
displayed in the Command Window. For example:
Systems passed: 0 of 1
Systems with warnings: 1 of 1
Systems failed: 0 of 1
Summary Report

The Summary Report link provides access to the Model Advisor Command-Line Summary
report.

You can review additional results in the Command Window by calling the
DisplayResults parameter when you run the Model Advisor. For example, run the
Model Advisor as follows:
SysResultObjArray = ModelAdvisor.run('sldemo_auto_climatecontrol/Heater Control',...
 'Configuration','slvnvdemo_mdladv_config.mat','DisplayResults','Details');

The results displayed in the Command Window are:
 Running Model Advisor
 Running Model Advisor on sldemo_auto_climatecontrol/Heater Control
 ==
 Model Advisor run: 29-Oct-2012 16:30:00
 Configuration: slvnvdemo_mdladv_config.mat
 System: sldemo_auto_climatecontrol/Heater Control
 System version: 8.1
 Created by: The MathWorks Inc.
 ==
 (1) Warning: Check model diagnostic parameters [check ID: mathworks.maab.jc_0021]
 --
 (2) Warning: Check for fully defined interface [check ID: mathworks.iec61508.RootLevelInports]
 --
 (3) Pass: Check for unconnected objects [check ID: mathworks.iec61508.UnconnectedObjects]
 --
 (4) Pass: Check for blocks not recommended for C/C++ production code deployment
[check ID: mathworks.iec61508.PCGSupport]
 --

4 Check Systems Programmatically

4-10

 Summary: Pass Warning Fail Not Run
 2 2 0 0
 ==

 Systems passed: 0 of 1

 Systems with warnings: 1 of 1

 Systems failed: 0 of 1
 Summary Report

To display the results in the Command Window after loading an object, use the
viewReport function.

View Results in Model Advisor Command-Line Summary
Report
When you run the Model Advisor programmatically, a Summary Report link is displayed in
the Command Window. Clicking this link opens the Model Advisor Command-Line
Summary report. The following graphic is the report that the Model Advisor generates for
run_configuration.

 Archive and View Results

4-11

To view the Model Advisor Command-Line Summary report after loading an object, use
the summaryReport function.

View Results in Model Advisor GUI
In the Model Advisor window, you can view the results of running the Model Advisor
programmatically using the viewReport function. In the Model Advisor window, you can
review results, run checks, fix warnings and failures, and view and save Model Advisor
reports.

Tip To fix warnings and failures, you must rerun the check in the Model Advisor window.

4 Check Systems Programmatically

4-12

View Model Advisor Report
For a single system or check, you can view the same Model Advisor report that you access
from the Model Advisor GUI.

To view the Model Advisor report for a system:

• Open the Model Advisor Command-Line Summary report. In the Systems Run table,
click the link for the Model Advisor report.

• Use the viewReport function.

To view individual check results:

• In the Command Window, generate a detailed report using the viewReport function
with the DisplayResults parameter set to Details, and then click the Pass,
Warning, or Fail link for the check. The Model Advisor report for the check opens.

• Use the view function.

See Also
ModelAdvisor.run | ModelAdvisor.summaryReport | view | viewReport

Related Examples
• “Archive and View Model Advisor Run Results” on page 4-14
• “Check Multiple Systems in Parallel” on page 4-7
• “Create a Function for Checking Multiple Systems in Parallel” on page 4-8

More About
• “Run Model Checks” (Simulink)
• “Save and Load Process for Objects” (MATLAB)

 See Also

4-13

Archive and View Model Advisor Run Results
This example guides you through archiving the results of running checks so that you can
review them at a later time. To simulate archiving and reviewing, the steps in the tutorial
detail how to save the results, clear out the MATLAB workspace (simulates shutting down
MATLAB), and then load and review the results.

1 Call the ModelAdvisor.run function:
SysResultObjArray = ModelAdvisor.run({'sldemo_auto_climatecontrol/Heater Control'},...
 'Configuration','slvnvdemo_mdladv_config.mat');

2 Save the SystResulObj for use at a later time:
save my_model_advisor_run SysResultObjArray

3 Clear the workspace to simulate viewing the results at a different time:
clear

4 Load the results of the Model Advisor run:
load my_model_advisor_run SysResultObjArray

5 View the results in the Model Advisor:
viewReport(SysResultObjArray{1},'MA')

See Also
ModelAdvisor.run

Related Examples
• “Archive and View Results” on page 4-10

4 Check Systems Programmatically

4-14

Model Metrics

5

Collect and Explore Metric Data by Using the Metrics
Dashboard

The Metrics Dashboard collects and integrates quality metric data from multiple Model-
Based Design tools to provide you with an assessment of your project quality status. To
open the dashboard:

• From a model editor window, select Analysis > Metrics Dashboard.
• At the command line, enter metricsdashboard(system). The system can be either

a model name or a block path to a subsystem. The system cannot be a Configurable
Subsystem block.

You can collect metric data by using the dashboard or programmatically by using the
slmetric.Engine API. When you open the dashboard, if you have previously collected
metric data for a particular model, the dashboard populates from existing data in the
database.

If you want to use the dashboard to collect (or recollect) metric data, in the toolbar:

• Use the Options menu to specify whether to include model references and libraries in
the data collection.

• Click All Metrics. If you do not want to collect metrics that require compiling the
model, click Non-Compile Metrics.

The Metrics Dashboard provides the system name and a data collection timestamp. If
there were issues during data collection, click the alert icon to see warnings.

Metrics Dashboard Widgets
The Metrics Dashboard contains widgets that provide visualization of metric data in these
categories: size, modeling guideline compliance, and architecture. To explore the data in
more detail, click an individual metric widget. For your selected metric, a table displays
the value, aggregated value, and measures (if applicable) at the model component level.
From the table, the dashboard provides traceability and hyperlinks to the data source so
that you can get detailed results and recommended actions for troubleshooting issues.
When exploring drill-in data, note that:

• The Metrics Dashboard calculates metric data per component. A component can be a
model, subsystem, chart, or MATLAB Function block.

5 Model Metrics

5-2

• To sort the results by value or aggregated value, click the corresponding value column
header.

• The metric data that is collected quantifies the overall system, including instances of
the same model. For aggregated values, the metric engine aggregates data from each
instance of a model in the referencing hierarchy. For example, if the same model is
referenced twice in the system hierarchy, its block count contributes twice to the
overall system block count.

• If a subsystem, chart, or MATLAB Function block uses a parameter or is flagged for an
issue, then the parameter count or issue count is increased for the parent component.

• The Metrics Dashboard analyzes variants.

For custom metrics, you can specify widgets to add to the dashboard. You can also remove
widgets. To learn more about customizing the Metrics Dashboard, see “Customize Metrics
Dashboard Layout and Functionality” on page 5-49.

Size
This table lists the Metrics Dashboard widgets that provide an overall picture of the size
of your system. When you drill into a widget, this table also lists the detailed information
available.

Widget Metric Drill-In Data
Blocks Simulink block count

(mathworks.metrics.SimulinkBlo
ckCount)

Number of blocks by component

Models Model file count
(mathworks.metrics.ModelFileCo
unt)

Number of model files by component

Files File count
(mathworks.metrics.FileCount)

Number of model and library files by
component

MATLAB LOC Effective lines of MATLAB code
(mathworks.metrics.MatlabLOCCo
unt)

Effective lines of code, in MATLAB
Function block and MATLAB functions
in Stateflow, by component

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-3

Widget Metric Drill-In Data
Stateflow LOC Effective lines of code for Stateflow

blocks
(mathworks.metrics.StateflowLO
CCount)

Effective lines of code for Stateflow
blocks by component

System Interface • Input and Output count
(mathworks.metrics.Explicit
IOCount)

• Parameter count
(mathworks.metrics.Paramete
rCount)

• Number of inputs and outputs by
component (includes trigger ports)

• Number of parameters by
component

Modeling Guideline Compliance
For this particular system, the model compliance widgets indicate the level of compliance
with industry standards and guidelines. This table lists the Metrics Dashboard widgets
related to modeling guideline compliance and the detailed information available when you
drill into the widget.

Widget Metric Drill-In Data
High Integrity
Compliance

Model Advisor standards check
compliance - High Integrity
(mathworks.metrics.ModelAdviso
rCheckCompliance.hisl_do178)

For each component:

• Percentage of checks passed
• Status of each check

Integration with the Model Advisor for
more detailed results. Click Table or
Grid to specify the format in which
you want to view results.

5 Model Metrics

5-4

Widget Metric Drill-In Data
MAAB
Compliance

Model Advisor standards check
compliance - MAAB
(mathworks.metrics.ModelAdviso
rCheckCompliance.maab)

For each component:

• Percentage of checks passed
• Status of each check

Integration with the Model Advisor for
more detailed results. Click Table or
Grid to specify the format in which
you want to view results.

High Integrity
Check Issues

Model Advisor standards issues -
High Integrity
(mathworks.metrics.ModelAdviso
rCheckIssues.hisl_do178)

• Number of compliance check issues
by component (see the following
Note below).

• Components without issues or
aggregated issues are not listed.

MAAB Check
Issues

Model Advisor standards issues -
MAAB
(mathworks.metrics.ModelAdviso
rCheckIssues.maab)

• Number of compliance check issues
by component (see the following
Note below).

• Components without issues or
aggregated issues are not listed.

Code Analyzer
Warnings

Warnings from MATLAB Code
Analyzer
(mathworks.metrics.MatlabCodeA
nalyzerWarnings)

Number of Code Analyzer warnings by
component.

Diagnostic
Warnings

Simulink diagnostic warning count
(mathworks.metrics.DiagnosticW
arningsCount)

• Numer of Simulink diagnostic
warnings by component.

• If there are warnings, at the top of
the dashboard, there is a hyperlink
that opens the Diagnostic Viewer.

Note An issue with a compliance check that analyzes configuration parameters adds to
the issue count for the model that fails the check.

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-5

You can use the Metrics Dashboard to perform compliance and issues checking on your
own group of Model Advisor checks. For more information, see “Customize Metrics
Dashboard Layout and Functionality” on page 5-49.

Architecture
These widgets provide a view of your system architecture:

• The Potential Reuse/Actual Reuse widget shows the percentage of total number of
subcomponents that are clones and the percentage of total number of components that
are linked library blocks. Orange indicates potential reuse. Blue indicates actual
reuse.

• The other system architecture widgets use a value scale. For each value range for a
metric, a colored bar indicates the number of components that fall within that range.
Darker colors indicate more components.

This table lists the Metrics Dashboard widgets related to architecture and the detailed
information available when you select the widget.

Widget Metric Drill-In Data
Potential Reuse /
Actual Reuse

Potential
Reuse(mathworks.metrics.CloneC
ontent) and Actual
Reuse(mathworks.metrics.Librar
yContent)

Fraction of total number of
subcomponents that are clones as a
percentage

Fraction of total number of
components that are linked library
blocks as a percentage

Integrate with the Identify Modeling
Clones tool by clicking the Open
Conversion Tool button.

Model
Complexity

Cyclomatic complexity
(mathworks.metrics.CyclomaticC
omplexity)

Model complexity by component

Blocks Simulink block count
(mathworks.metrics.SimulinkBlo
ckCount)

Number of blocks by component

5 Model Metrics

5-6

Widget Metric Drill-In Data
Stateflow LOC Effective lines of code for Stateflow

blocks
(mathworks.metrics.StateflowLO
CCount)

Effective lines of code for Stateflow
blocks by component

MATLAB LOC Effective lines of MATLAB code
(mathworks.metrics.MatlabLOCCo
unt)

Effective lines of code, in MATLAB
Function block and MATLAB functions
in Stateflow, by component

Metric Thresholds
For the Model Complexity, Modeling Guideline Compliance, and Reuse widgets, the
Metrics Dashboard contains default threshold values. These values indicate whether your
data is Compliant or requires review (Warning). For Compliant data, the widget contains
green. For warning data, the widget contains yellow. Widgets that do not have Metric
threshold values contain blue.

• For the Modeling Guideline Compliance metrics, the metric threshold value is zero
Model Advisor issues. If you model has issues, the widgets contain yellow. If there are
no issues, the widgets contain green.

• If your model has warnings, the Code Analyzer and Diagnostic widgets are yellow. If
there are no warnings, the widgets contain green.

• For the reuse widgets, the metric threshold value is zero. If your model has any
potential clones, the widget contains yellow. If there are no potential clones, the
widget contains green.

• For the Model Complexity widget, the metric threshold value is 30. If your model has
a cyclomatic complexity greater than 30, the widget contains yellow. If the value is less
than or equal to 30, the widget contains green.

You can specify your own metric threshold values for all of the widgets in the Metrics
Dashboard. You can also specify values corresponding to a noncompliant range. For more
information, see “Customize Metrics Dashboard Layout and Functionality” on page 5-49.

Dashboard Limitations
When using the Metrics Dashboard, note these considerations:

 Collect and Explore Metric Data by Using the Metrics Dashboard

5-7

• The analysis root for the Metrics Dashboard cannot be a Configurable Subsystem
block.

• The Model Advisor, a tool that the Metrics Dashboard uses for data collection, cannot
have more than one open session per model. For this reason, when the dashboard
collects data, it closes an existing Model Advisor session.

• If you use an sl_customization.m file to customize Model Advisor checks, these
customizations can change your dashboard results. For example, if you hide Model
Advisor checks that the dashboard uses to collect metrics, the dashboard does not
collect results for those metrics.

• When the dashboard collects metrics that require a model compilation, the software
changes to a temporary folder. Because of this folder change, relative path
dependencies in your model can become invalid.

• The Metrics Dashboard does not support self-modifying masked library blocks.
Analysis of these components might be incomplete.

• The Metrics Dashboard does not count MAAB checks that are not about blocks as
issues. Examples include checks that warn about font formatting or file names. In the
Model Advisor Check Issues widget, the tool might report zero MAAB issues, but still
report issues in the MAAB Modeling Guideline Compliance widget. For more
information about these issues, click the MAAB Modeling Guideline Compliance
widget.

See Also

More About
• “Collect Model Metrics Programmatically” on page 5-19
• “Model Metrics”

5 Model Metrics

5-8

Collect Model Metrics Using the Model Advisor
To help you assess your model for size, complexity, and readability, you can run model
metrics in the Model Advisor By Task > Model Metrics subfolder.

1 Open the sldemo_fuelsys model.
2 From the Simulink Editor, select Analysis > Model Advisor > Model Advisor. A

System Selector — Model Advisor dialog box opens. Click OK.
3 In the left pane of the Model Advisor, navigate to By Task > Model Metrics. Select

the model metrics to run on your model.

4 Click Run Selected Checks.
5 After the Model Advisor runs an analysis, in the left pane of the Model Advisor

window, select a model metric to explore the result. Select the metric Simulink
block metric. A summary table provides the number of blocks at the root model
level and subsystem level.

 Collect Model Metrics Using the Model Advisor

5-9

matlab:sldemo_fuelsys

Alternatively, you can view the analysis results in the Model Advisor report.

After reviewing the metric results, you can update your model to meet size, complexity,
and readability recommendations.

See Also

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-23
• “Collect Model Metrics Programmatically” on page 5-19
• “Create a Custom Model Metric” on page 5-11

5 Model Metrics

5-10

Create a Custom Model Metric
To create your own custom model metric:

1 Use the slmetric.metric.createNewMetricClass function to create a new
metric class derived from the base class slmetric.metric.Metric.

2 Set the following properties of the class:

• ID: Unique metric identifier that retrieves the new metric data.
• Name: Name of the metric algorithm.
• ComponentScope: Model components for which the metric is calculated.
• CompileContext: Compile mode for metric calculation. If your model requires

model metric requires model compilation, specify PostCompile. Collecting
metric data for compiled models slows performance.

• ResultCheckSumCoverage: Specify whether you want the metric data
regenerated if source file and Version have not changed.

• AggregationMode: How the metric algorithm aggregates metric data.
• AggregateComponentDetails: Returns all detailed results or aggregates

detailed results of the component.

Optionally, set these additional properties:

• Description: Description of the metric.
• Version: Metric version.

3 Write the metric algorithm into the slmetric.metric.Metric method, algorithm.
The algorithm calculates the metric data specified by the
Advisor.component.Component class. The Advisor.component.Types class
specifies the types of model objects for which you can calculate metric data.

Create Model Metric for Nonvirtual Block Count
This example shows how to use the model metric API to create a custom model metric for
counting nonvirtual blocks in a model. After creating the metric, you can collect data for
the metric, access the results, and export the results.

Create Metric Class

Using the createNewMetricClass function, create a new metric class named
nonvirtualblockcount. The function creates a file, nonvirtualblockcount.m, in

 Create a Custom Model Metric

5-11

the current working folder. The file contains a constructor and empty metric algorithm
method. For this example, make sure you are in a writable folder.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

Create Nonvirtual Block Count Metric

To write the metric algorithm, open the nonvirtualblockcount.m file and add the
metric to the file. For example, to edit the file, use the command edit(className). For
this example, you can create the metric algorithm by copying this logic into
nonvirtualblockcount.m file.

classdef nonvirtualblockcount < slmetric.metric.Metric
 %nonvirtualblockcount calculates number of nonvirtual blocks per level.
 % BusCreator, BusSelector and BusAssign are treated as nonvirtual.
 properties
 VirtualBlockTypes = {'Demux','From','Goto','Ground', ...
 'GotoTagVisiblity','Mux','SignalSpecification', ...
 'Terminator','Inport'};
 end

 methods
 function this = nonvirtualblockcount()
 this.ID = 'nonvirtualblockcount';
 this.Name = 'Nonvirtual Block Count';
 this.Version = 1;
 this.CompileContext = 'None';
 this.Description = 'Algorithm that counts nonvirtual blocks per level.';
 this.ComponentScope = [Advisor.component.Types.Model, ...
 Advisor.component.Types.SubSystem];
 this.AggregationMode = slmetric.AggregationMode.Sum;
 this.AggregateComponentDetails = true;
 this.ResultChecksumCoverage = true;
 this.SupportsResultDetails = true;

 end

 function res = algorithm(this, component)
 % create a result object for this component
 res = slmetric.metric.Result();

 % set the component and metric ID
 res.ComponentID = component.ID;

5 Model Metrics

5-12

 res.MetricID = this.ID;

 % Practice

 D1=slmetric.metric.ResultDetail('identifier 1','Name 1');
 D1.Value=0;
 D1.setGroup('Group1','Group1Name');
 D2=slmetric.metric.ResultDetail('identifier 2','Name 2');
 D2.Value=1;
 D2.setGroup('Group1','Group1Name');

 % use find_system to get all blocks inside this component
 blocks = find_system(getPath(component), ...
 'SearchDepth', 1, ...
 'Type', 'Block');

 isNonVirtual = true(size(blocks));

 for n=1:length(blocks)
 blockType = get_param(blocks{n}, 'BlockType');

 if any(strcmp(this.VirtualBlockTypes, blockType))
 isNonVirtual(n) = false;
 else
 switch blockType
 case 'SubSystem'
 % Virtual unless the block is conditionally executed
 % or the Treat as atomic unit check box is selected.
 if strcmp(get_param(blocks{n}, 'IsSubSystemVirtual'), ...
 'on')
 isNonVirtual(n) = false;
 end
 case 'Outport'
 % Outport: Virtual when the block resides within
 % SubSystem block (conditional or not), and
 % does not reside in the root (top-level) Simulink window.
 if component.Type ~= Advisor.component.Types.Model
 isNonVirtual(n) = false;
 end
 case 'Selector'
 % Virtual only when Number of input dimensions
 % specifies 1 and Index Option specifies Select

 Create a Custom Model Metric

5-13

 % all, Index vector (dialog), or Starting index (dialog).
 nod = get_param(blocks{n}, 'NumberOfDimensions');
 ios = get_param(blocks{n}, 'IndexOptionArray');

 ios_settings = {'Assign all', 'Index vector (dialog)', ...
 'Starting index (dialog)'};

 if nod == 1 && any(strcmp(ios_settings, ios))
 isNonVirtual(n) = false;
 end
 case 'Trigger'
 % Virtual when the output port is not present.
 if strcmp(get_param(blocks{n}, 'ShowOutputPort'), 'off')
 isNonVirtual(n) = false;
 end
 case 'Enable'
 % Virtual unless connected directly to an Outport block.
 isNonVirtual(n) = false;

 if strcmp(get_param(blocks{n}, 'ShowOutputPort'), 'on')
 pc = get_param(blocks{n}, 'PortConnectivity');

 if ~isempty(pc.DstBlock) && ...
 strcmp(get_param(pc.DstBlock, 'BlockType'), ...
 'Outport')
 isNonVirtual(n) = true;
 end
 end
 end
 end
 end

 blocks = blocks(isNonVirtual);

 res.Value = length(blocks);
 end
 end
end

Now that your new model metric is defined in nonvirtualblockcount.m, register the
new metric in the metric repository.

[id_metric,err_msg] = slmetric.metric.registerMetric(className);

5 Model Metrics

5-14

Collect Metric Data

To collect metric data on models, use instances of slmetric.Engine. Using the
getMetrics method, specify the metrics you want to collect. For this example, specify
the nonvirtual block count metric for the sldemo_mdlref_bus model.

Load the sldemo_mdlref_bus model.

model = 'sldemo_mdlref_bus';
load_system(model);

Create a metric engine object and set the analysis root.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root',model,'RootType','Model');

Collect metric data for the nonvirtual block count metric.

execute(metric_engine);
rc = getMetrics(metric_engine,id_metric);

Display and Export Results

To access the metrics for your model, use instances of slmetric.metric.Result. In
this example, display the nonvirtual block count metrics for the
sldemo_mdlref_busmodel. For each result, display the MetricID, ComponentPath,
and Value.

for n=1:length(rc)
 if rc(n).Status == 0
 results = rc(n).Results;

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ', results(m).ComponentPath]);
 disp([' Value: ', num2str(results(m).Value)]);
 disp(' ');
 end
 else
 disp(['No results for:',rc(n).MetricID]);
 end
 disp(' ');
end

Here are the results.

 Create a Custom Model Metric

5-15

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus
 Value: 15

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus/More Info3
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus/More Info4
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus/More Info1
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_bus/More Info2
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus
 Value: 2

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER
 Value: 6

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter
 Value: 3

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter/ResetCheck
 Value: 4

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter/ResetCheck/NoReset
 Value: 2

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter/ResetCheck/Reset
 Value: 3

5 Model Metrics

5-16

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/Counter/SaturationCheck
 Value: 5

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/COUNTER/LimitsProcess
 Value: 1

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/More Info1
 Value: 0

MetricID: nonvirtualblockcount
 ComponentPath: sldemo_mdlref_counter_bus/More Info2
 Value: 0

To export the metric results to an XML file, use the exportMetrics method. For each
metric result, the XML file includes the ComponentID, ComponentPath, MetricID,
Value, AggregatedValue, and Measure.

filename='MyMetricData.xml';
exportMetrics(metric_engine,filename);

For this example, unregister the nonvirtual block count metric.

slmetric.metric.unregisterMetric(id_metric);

Close the model.

clear;
bdclose('all');

Limitations
Custom metric algorithms do not support the path property on component objects:

• Linked Stateflow charts
• MATLAB Function blocks

Custom metric algorithms do not follow library links.

 Create a Custom Model Metric

5-17

See Also
Advisor.component.Component | Advisor.component.Types | slmetric.Engine
| slmetric.metric.Metric | slmetric.metric.Result |
slmetric.metric.createNewMetricClass

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-23
• “Collect Model Metrics Programmatically” on page 5-19

5 Model Metrics

5-18

Collect Model Metrics Programmatically
This example shows how to use the model metric API to programmatically collect
subsystem and block count metrics for a model. After collecting metrics for the model,
you can access the results and export them to a file.

Example Model
Open model vdp.

model = 'vdp';
open_system(model);
shh = get(0,'ShowHiddenHandles');
set(0,'ShowHiddenHandles','On');
hscope = findobj(0,'Type','Figure','Tag','SIMULINK_SIMSCOPE_FIGURE');
close(hscope);
set(0,'ShowHiddenHandles',shh);

Collect Metrics
To collect metric data on a model, create a metric engine object and call execute.

 Collect Model Metrics Programmatically

5-19

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root','vdp','RootType','Model');
execute(metric_engine);

Access Results
Using the getMetrics method, specify the metrics you want to collect. For this example,
specify the block count and subsystem count metrics for the vdp model. getMetrics
returns an array of slmetric.metric.ResultCollection objects.

res_col = getMetrics(metric_engine,{'mathworks.metrics.SimulinkBlockCount',...
'mathworks.metrics.SubSystemCount'});

Display and Store Results
Create cell array metricData to store the MetricID, ComponentPath, and Value for
the metric results. The MetricID is the identifier for the metric, the ComponentPath is
the path to component for which the metric is calculated, and the Value is the metric
value.

metricData ={'MetricID','ComponentPath','Value'};
cnt = 1;
for n=1:length(res_col)
 if res_col(n).Status == 0
 results = res_col(n).Results;

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ',results(m).ComponentPath]);
 disp([' Value: ',num2str(results(m).Value)]);
 metricData{cnt+1,1} = results(m).MetricID;
 metricData{cnt+1,2} = results(m).ComponentPath;
 metricData{cnt+1,3} = results(m).Value;
 cnt = cnt + 1;
 end
 else
 disp(['No results for:',res_col(n).MetricID]);
 end
 disp(' ');
end

Here are the results.

5 Model Metrics

5-20

MetricID: mathworks.metrics.SimulinkBlockCount
 ComponentPath: vdp
 Value: 11
MetricID: mathworks.metrics.SimulinkBlockCount
 ComponentPath: vdp/More Info
 Value: 1

MetricID: mathworks.metrics.SubSystemCount
 ComponentPath: vdp
 Value: 1
MetricID: mathworks.metrics.SubSystemCount
 ComponentPath: vdp/More Info
 Value: 0

Export Results to a Spreadsheet

To export the metricData results MetricID, ComponentPath, and Value to a
spreadsheet, use writetable to write the contents of metricData to
MySpreadsheet.xlsx.

filename = 'MySpreadsheet.xlsx';
T=table(metricData);
writetable(T,filename);

Export Results to an XML File

To export the metric results to an XML file, use the exportMetrics method. For each
metric result, the XML file includes the ComponentID, ComponentPath, MetricID,
Value, AggregatedValue, and Measure.

filename='MyMetricResults.xml';
exportMetrics(metric_engine,filename)

Close the model vdp.

bdclose(model);

Limitations
For one model, you cannot collect metric data into the same database file (that is, the
Metrics.db file) on multiple platforms.

 Collect Model Metrics Programmatically

5-21

See Also
slmetric.Engine | slmetric.metric.Result |
slmetric.metric.ResultCollection

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-23
• “Collect Model Metrics Using the Model Advisor” on page 5-9
• “Create a Custom Model Metric” on page 5-11

5 Model Metrics

5-22

Model Metric Data Aggregation
You can better understand the size, complexity, and readability of a model and its
components by analyzing aggregated model metric data. Aggregated metric data is
available in the AggregatedValue and AggregatedMeasures properties of an
slmetric.metric.Result object. The AggregatedValue property aggregates the
metric scalar values. The AggregatedMeasures property aggregates the metric
measures (that is, the detailed information about the metric values).

How Model Metric Aggregation Works
The implementation of a model metric defines how a metric aggregates data across a
component hierarchy. For MathWorks model metrics, the slmetric.metric.Metric
class defines model metric aggregation. This class includes these two aggregation
properties:

• AggregationMode, which has these options:

• Sum: Returns the sum of the Value property and the Value properties of its
children components across the component hierarchy. Returns the sum of the
Meaures property and the Measures properties of its children components across
the component hierarchy.

• Max: Returns the maximum of the Value property and the Value properties of its
children components across the component hierarchy. Returns the maximum of the
Measures property and the Measures properties of its children components
across the component hierarchy.

• None: No aggregation of metric values.
• AggregateComponentDetails is a Boolean value, which has these options:

• true: For metrics that return fine-granular results (that is, more than one result
per component), the software aggregates these results to the component level by
taking the sum of the values and measures properties. Returns a result that spans
the complete component.

• false: Returns the component results. The software does not aggregate the fine-
granular results.

The MathWorks model metrics that return fine-granular results are:

• “Cyclomatic complexity metric”, which creates a result for each state in a Chart.

 Model Metric Data Aggregation

5-23

• “Effective lines of MATLAB code metric”, which creates a result for each function
or subfunction inside a MATLAB function block or a MATLAB function in Stateflow.

You can find descriptions of MathWorks model metrics and their aggregation property
settings in “Model Metrics”. For custom metrics, as part of the algorithm method, you
can define how the metric aggregates data. For more information, see “Create a Custom
Model Metric” on page 5-11.

This diagram shows how the software aggregates metric data across the components of a
model hierarchy. The parent model is at the top of the hierarchy. The components can be
the following:

• Model
• Subsystem block
• Chart
• MATLAB function block
• Protected model

5 Model Metrics

5-24

Access Aggregated Metric Data
This example shows how to collect metric data programmatically in the metric engine,
and then access aggregated metric data.

1 Load the sldemo_applyVarStruct model.

model = 'sldemo_applyVarStruct';
open(model);
load_system(model);

2 Create an slmetric.Engine object and set the analysis root.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root',model,'RootType','Model');

3 Collect data for the Input output model metric.

execute(metric_engine,'mathworks.metrics.IOCount');
4 Get the model metric data that returns an array of

slmetric.metric.ResultCollection objects, res_col. Specify the input
argument for AggregationDepth.

res_col = getMetrics(metric_engine,'mathworks.metrics.IOCount',...
'AggregationDepth','All');

The AggregationDepth input argument has two options: All and None. If you do
not want the getMetrics method to aggregate measures and values, specify None.

5 Display the results.

metricData ={'MetricID','ComponentPath','Value',...
 'AggregatedValue','Measures','AggregatedMeasures'};
cnt = 1;
for n=1:length(res_col)
 if res_col(n).Status == 0
 results = res_col(n).Results;

 for m=1:length(results)
 disp(['MetricID: ',results(m).MetricID]);
 disp([' ComponentPath: ',results(m).ComponentPath]);
 disp([' Value: ',num2str(results(m).Value)]);
 disp([' Aggregated Value: ',num2str(results(m).AggregatedValue)]);
 disp([' Measures: ',num2str(results(m).Measures)]);
 disp([' Aggregated Measures: ',...
 num2str(results(m).AggregatedMeasures)]);

 Model Metric Data Aggregation

5-25

 metricData{cnt+1,1} = results(m).MetricID;
 metricData{cnt+1,2} = results(m).ComponentPath;
 metricData{cnt+1,3} = results(m).Value;
 tdmetricData{cnt+1,4} = results(m).Measures;
 metricData{cnt+1,5} = results(m).AggregatedMeasures;
 cnt = cnt + 1;
 end
 else
 disp(['No results for:',res_col(n).MetricID]);
 end
 disp(' ');
end

Here are the results:

MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct
 Value: 3
 Aggregated Value: 5
 Measures: 1 2 0 0
 Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Controller
 Value: 4
 Aggregated Value: 4
 Measures: 3 1 0 0
 Aggregated Measures: 3 1 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Aircraft
Dynamics
Model
 Value: 5
 Aggregated Value: 5
 Measures: 3 2 0 0
 Aggregated Measures: 3 2 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Dryden Wind
Gust Models
 Value: 2
 Aggregated Value: 2
 Measures: 0 2 0 0
 Aggregated Measures: 0 2 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/Nz pilot
calculation

5 Model Metrics

5-26

 Value: 3
 Aggregated Value: 3
 Measures: 2 1 0 0
 Aggregated Measures: 2 1 0 0
MetricID: mathworks.metrics.IOCount
 ComponentPath: sldemo_applyVarStruct/More Info2
 Value: 0
 Aggregated Value: 0
 Measures: 0 0 0 0
 Aggregated Measures: 0 0 0 0

For the Input output metric, the AggregationMode is Max. For each component, the
AggregatedValue and AggregatedMeasures properties are the maximum number of
inputs and outputs of itself and its children components. For example, for
sldemo_applyVarStruct, the AggregatedValue property is 5, which is the
sldemo_applyVarStruct/Aircraft Dynamics Model component value.

See Also
slmetric.Engine | slmetric.metric.Metric | slmetric.metric.Result |
slmetric.metric.ResultCollection

More About
• “Model Metrics”
• “Model Metric Data Aggregation” on page 5-23
• “Collect Model Metrics Using the Model Advisor” on page 5-9
• “Create a Custom Model Metric” on page 5-11

 See Also

5-27

Enable Subsystem Reuse with Clone Detection
You can use the Model Metrics Dashboard tool to enable subsystem reuse by identifying
exact graphical clones across a model hierarchy. Exact graphical clones are identical
MATLAB Function blocks, identical Stateflow Charts, and subsystems that have identical
block types, connections, and parameter settings and values. To replace clones with links
to library blocks, from the Model Metrics Dashboard, you can open the Identify Modeling
Clones tool.

Identify Exact Graphical Clones

To open the example model ex_clone_detection, change to the matlabroot\help
\toolbox\simulink\examples folder. At the MATLAB command line, enter:

cd(fullfile(docroot, 'toolbox','simulink','examples'));

5 Model Metrics

5-28

1 Save the ex_clone_detection.slx model to a local working folder.
2 In the Simulink Editor, from the Analysis menu, select Metrics Dashboard.
3 On the toolstrip, click the All Metrics button.
4 In the ARCHITECTURE section, the yellow shaded bar in the Potential Reuse row

indicates that the model contains exact graphical clones. The percentage is the
fraction of the total number of subsystems, including Stateflow Charts and MATLAB
Function blocks, that are exact graphical clones. To see details, click the yellow bar.

5 The model contains two exact graphical clones, SS4 and SS1.

Replace Exact Graphical Clones with Links to Library Blocks

1 To replace clones with links to library blocks, open the Clone Detection tool by
clicking Open Conversion Tool.

2 The Clone Detection tool opens and reruns the analysis. The results are in the step
Replace graphical clones with library links. The Model Metrics Dashboard tool
identifies only exact graphical clones. The Clone Detection tool identifies other clone
types and refactors a model to replace some of these clones with links to library
blocks. For more information, see “Enable Component Reuse by Using Clone
Detection” on page 3-14.

3 The Results table contains hyperlinks to the subsystem clones.
4 Click Refactor Model. The Clone Detection tool replaces the clones with links to

library blocks. The library blocks are in the library specified by the New library file
name parameter. The library is on the MATLAB path. It has a default name of
graphicalCloneLibFile. The Refactor Model button is now unavailable, and the
Undo button is enabled.

 Enable Subsystem Reuse with Clone Detection

5-29

After you refactor, you can remove the latest changes from the model by clicking the
Undo button. Each time you refactor a model, the tool creates a back-up model in the
folder that has the prefix m2m_ plus the model name.

Run Model Metrics on Refactored Model

1 Navigate back to the Metrics Dashboard.
2 On the toolstrip, click the All Metrics button.
3 In the ARCHITECTURE section, the blue bar in the Actual Reuse row indicates

that 25% of model components are links to library subsystems. The Potential Reuse

5 Model Metrics

5-30

row indicates that the model does not contain any exact graphical clones that do not
have links to library blocks.

See Also

More About
• “Collect Model Metrics”

 See Also

5-31

Collect Compliance Data and Explore Results in the
Model Advisor

This example shows how to collect model metric data by using the Metrics Dashboard.
From the dashboard, explore detailed compliance results and, fix compliance issues by
using the Model Advisor.

Open the Example Model

Open the example model sldemo_fuelsys and save the model to a local folder.

open_system('sldemo_fuelsys');

Open the Metrics Dashboard

In the model window, open the Metrics Dashboard by selecting Analysis > Metrics
Dashboard.

5 Model Metrics

5-32

matlab:sldemo_fuelsys

Collect Model Metrics

To collect the metric data for this model, click the All Metrics icon.

Explore Compliance Results

Locate the MODELING GUIDELINE COMPLIANCE section of the dashboard. This
section displays the percentage of High Integrity and MAAB compliance checks that
passed on all systems. The bars chart show the number of issues reported by the checks
in the corresponding check group.

To see a table that details the number of compliance issues by component, click anywhere
on the High Integrity bar chart. For compliance checks that analyze configuration
settings, each check that does not pass adds 1 issue to the model on which it failed.

 Collect Compliance Data and Explore Results in the Model Advisor

5-33

From the table, open the Throttle component in the model editor by clicking the
component hyperlink in the table. The model editor highlights blocks in the component
that have compliance issues.

5 Model Metrics

5-34

Explore Compliance Results in the Model Advisor

1 In the Metrics Dashboard, return to the main dashboard page by clicking the
Dashboard icon.

2 Click the High Integrity percentage gauge.
3 To see the status for each compliance check, click the Table view.
4 Expand the sldemo_fuelsys node.
5 To explore check results in more detail, click the Check safety-related diagnostic

settings for sample time hyperlink.
6 In the Model Advisor Highlight dialog box, click Check safety-related diagnostic

settings for sample time hyperlink.

 Collect Compliance Data and Explore Results in the Model Advisor

5-35

Fix a Compliance Issue

1 In the Model Advisor Report, the check results show the Current Value and
Recommended Value of diagnostic parameters.

2 To change the Current Value to the Recommended Value, click the parameter. The
Model Configuration Parameters dialog box opens.

3 Change the parameter settings.
4 Save your changes and close the dialog box.
5 Save the changes to the model.

Recollect Metrics

1 Return to the Metrics Dashboard.
2 To recollect the model metrics, click the All Metrics icon.
3 To return to the main dashboard page, click the Dashboard icon.
4 Confirm that the number of High Integrity check issues is reduced and the

compliance percentage is increased.

See Also

More About
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2
• “Collect Model Metrics Programmatically” on page 5-19

5 Model Metrics

5-36

Collect Metric Data Programmatically and View Data
Through the Metrics Dashboard

This example shows how to use the model metrics API to collect model metric data for
your model, and then explore the results by using the Metrics Dashboard.

Collect Metric Data Programmatically

To collect all of the available metrics for the model sldemo_fuelsys, use the
slmetric.Engine API. The metrics engine stores the results in the metric repository file
in the current Simulation Cache Folder, slprj.

metric_engine = slmetric.Engine();
setAnalysisRoot(metric_engine,'Root','sldemo_fuelsys','RootType','Model');
execute(metric_engine);

Determine Model Compliance with MAAB Guidelines

To determine the percentage of MAAB checks that pass, use the metric compliance
results.

metricID = 'mathworks.metrics.ModelAdvisorCheckCompliance.maab';
metricResult = getAnalysisRootMetric(metric_engine, metricID);
disp(['MAAB compliance: ', num2str(100 * metricResult.Value, 3),'%']);

Open the Metrics Dashboard

To explore the collected compliance metrics in more detail, open the Metrics Dashboard
for the model.

metricsdashboard('sldemo_fuelsys');

The Metrics Dashboard opens data for the model from the active metric repository, inside
the active Simulation Cache Folder. To view the previously collected data, the slprj
folder must be the same.

Find the MODELING GUIDELINE COMPLIANCE section of the dashboard. For each
category of compliance checks, the gauge indicates the percentage of compliance checks
that passed.

 Collect Metric Data Programmatically and View Data Through the Metrics Dashboard

5-37

The dashboard reports the same MAAB compliance percentage as the slmetric.Engine
API reports.

Explore the MAAB Compliance Results

Underneath the percentage gauges, the bar chart indicates the number of compliance
check issues. Click anywhere in the MAAB bar chart for Model Advisor Check Issues.

The table details the number of check issues per model component. To sort the
components by number of check issues, click the Issues column.

5 Model Metrics

5-38

See Also

More About
• “Collect Model Metrics Programmatically” on page 5-19
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

 See Also

5-39

Fix Metric Threshold Violations in a Continuous
Integration Systems Workflow

This example shows how to use the Metrics Dashboard with open-source tools GitLab and
Jenkins to test and refine your model in a continuous integration systems workflow.
Continuous integration is the practice of merging all developer working copies of project
files to a shared mainline. This workflow saves time and improves quality by maintaining
version control and automating and standardizing testing.

This example refers to a Simulink project that contains the shipped Simulink project
matlab:sldemo_slproject_airframe and these additional files which are relevant to this
example:

• A MATLAB script that specifies metric thresholds and customizes the Metrics
Dashboard.

• A MATLAB unit test that collects metric data and checks whether there are metric
threshold violations.

The example uses the Jenkins continuous integration server to run the MATLAB unit test
to determine if there are metric threshold violations. Jenkins archives test results for you
to download and investigate locally. GitLab is an online Git repository manager that you
can configure to work with Jenkins. This diagram shows how Simulink Check, GitLab, and
Jenkins work together in a continuous integration workflow.

5 Model Metrics

5-40

matlab:sldemo_slproject_airframe

Simulink Project Setup
The Simulink Project contains all model, data, and configuration files including these files
which are required for this example:

• A MATLAB unit test that collects metric data for the Simulink Project and checks that
the model files contain no metric threshold violations. For more information on the
MATLAB Unit tests, see “Script-Based Unit Tests” (MATLAB).

• A setup.m file that activates the configuration XML files that define metric
thresholds, set custom metric families, and customizes the Metrics Dashboard layout.
For this example, this code is the setup.m script:

function setup
 % refresh Model Advisor customizations
 Advisor.Manager.refresh_customizations();

 % set metric configuration with thresholds
 configFile = fullfile(pwd, 'config', 'MyConfiguration.xml');
 slmetric.config.setActiveConfiguration(configFile);

 uiconf = fullfile(pwd, 'config', 'MyDashboardConfiguration.xml');

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-41

 slmetric.dashboard.setActiveConfiguration(uiconf);
end

On the Simulink Project tab, click Startup Shudown. For the Startup files field,
specify the setup.m file.

For more information on how to customize the Metrics Dashboard, see “Customize
Metrics Dashboard Layout and Functionality” on page 5-49.

• An sl_customization.m file that activates the Model Advisor configuration file to
customize the Model Advisor checks.

function sl_customization(cm)
 cm.addModelAdvisorProcessFcn(@ModelAdvisorProcessFunction);
end

function [checkCellArray, taskCellArray] = ...
 ModelAdvisorProcessFunction(stage, ~, checkCellArray, taskCellArray)

 switch stage
 case 'configure'
 % set the default Model Advisor configuration
 ModelAdvisor.setConfiguration(fullfile(pwd, 'config', 'MAConfig.mat'));
 end
end

• A run script that executes during a Jenkins build. For this example, this code is in the
run.m file:

% script executed during Jenkins build
function run(IN_CI)
 if (IN_CI)
 jenkins_workspace = getenv('WORKSPACE');
 cd(jenkins_workspace);
 end

 % open the sl project
 slproj = simulinkproject(pwd);

 % execute tests
 runUnitTest();

 slproj.close();

 if IN_CI
 exit

5 Model Metrics

5-42

 end
end

• A cleanup.m file that resets the active metric configuration to the default
configuration. For this example, this code is in the cleanup.m file script:

function cleanup
 rmpath(fullfile(pwd, 'data'));
 Advisor.Manager.refresh_customizations();

 % reset active metric configuration to default
 slmetric.config.setActiveConfiguration('');
 slmetric.dashboard.setActiveConfiguration('');
end

On the Simulink Project tab, click Startup Shudown. For the Shutdown files field,
specify the cleanup.m file.

• A .gitignore file that verifies that derived artifacts are not checked into GitLab.
This code is in the .gitignore file:

work/**
reports/**
*.asv
*.autosave

GitLab Setup
Create a GitLab project for source-controlling your Simulink Project. For more
information, see https://docs.gitlab.com/ee/README.html.

1 Install the Git Client.
2 Set up a branching workflow. With GitLab, from the main branch, create a temporary

branch for implementing changes to the model files. Integration engineers can use
Jenkins test results to decide whether to merge a temporary branch into the master
branch. For more information, see

https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows.
3 Under Settings > Repository, protect the master branch by enforcing the use of

merge requests when developers want to merge their changes into the master
branch.

4 Under Settings, on the Integrations page, add a webhook to the URL of your
Jenkins project. This webhook triggers a build job on the Jenkins server.

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-43

https://docs.gitlab.com/ee/README.html
https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows

Jenkins Setup
Install GitLab and Tap plugins. Jenkins uses the TAPPlugin to stream results to a .tap
file. To enable communication of test status from MATLAB to the Jenkins job, Jenkins
imports the .tap file.

Create a Jenkins project. Specify these configurations:

1 In your Jenkins project, click Configure.
2 On the General tab, specify a project name.
3 On the Source Code Management tab, for the Repository URL field, specify the

URL of your GitLab repository.
4 On the Build Triggers tab, select Build when a change is pushed to GitLab.
5 On the Build tab, execute MATLAB to call the run script. The run script opens the

Simulink project and runs all unit tests. For the Simulink Project in this example, the
code is:

matlab -nodisplay -r...
 "cd /var/lib/jenkins/workspace/'18b Metrics CI Demo'; run(true)"

6 In the Post-build Actions tab, configure the TAP plugin to publish TAP results to
Jenkins. In the Test Results field, specify reports/*.tap. For Files to archive,
specify reports/**,work/**.

The TAP plugin shows details from the MATLAB Unit test in the extended results of
the job. The Jenkins archiving infrastructure saves derived artifacts that are
generated during a Jenkins build.

Continuous Integration Workflow
After setting up your Simulink Project, Jenkins, and GitLab, follow the continuous
integration workflow.

Phase 1: Feature Development

1 Create a local clone of the GitLab repository. See “Clone from Git Repository”
(MATLAB).

2 In Simulink, navigate to the local GitLab repository.
3 Create a feature branch and fetch and check-out files. See “Branch and Merge Files

with Git” (Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).

5 Model Metrics

5-44

4 Make any necessary changes to the Simulink Project files.
5 Simulate the model and validate the output in the Simulation Data Inspector.
6 Run MATLAB unit tests. For more information, see runtests.
7 Add and commit the modified models to the feature branch. See “Branch and Merge

Files with Git” (Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).
8 Push changes to the GitLab repository. See “Branch and Merge Files with Git”

(Simulink) and “Pull, Push, and Fetch Files with Git” (Simulink).
9 In GitLab, create a merge request. Select the feature branch as source branch and

the target branch as master. Click Compare Branches and Continue.
10 If the feature is not fully implemented, mark the merge request as a work in progress

by adding the letters WIP: at the beginning of the request. If the merge request is not
marked WIP:, it immediately triggers a build after creation.

11 Click Submit Merge Request.

Phase 2: Qualification by Using Continuous Integration

1 If the letters WIP: are not at the beginning of the merge request, the push command
triggers a Jenkins build. In the Jenkins Setup part of this example, you configured
Jenkins to perform a build when you pushed changes to GitLab. To remove the
letters, click Resolve WIP status.

2 Navigate to the Jenkins project. In Build History, you can see the build status.
3 Click the Build.
4 Click Tap Test Results.
5 For this example, the MetricThresholdGateway.m unit test did not pass for three

metrics because these metrics did not meet the thresholds. To investigate this data,
you must download the data locally.

 Fix Metric Threshold Violations in a Continuous Integration Systems Workflow

5-45

Phase 3: Investigate Quality Issues Locally

1 Download the archived results to a local Git repository workspace.
2 Unzip the downloaded files. Copy the reports/ and work/ folders to the respective

folders in the local repository.
3 To explore the results, open the Simulink Project and the Metrics Dashboard.

5 Model Metrics

5-46

4 To resolve the test failures, make the necessary updates to the models. Push the
changes to the feature branch in GitLab.

5 Integration engineers can use Jenkins test results to decide when it is acceptable to
perform the merge of the temporary branch into the master branch.

See Also
slmetric.config.setActiveConfiguration |
slmetric.dashboard.setActiveConfiguration

More About
• “Collect Model Metric Data by Using the Metrics Dashboard” on page 1-9

 See Also

5-47

• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

5 Model Metrics

5-48

Customize Metrics Dashboard Layout and Functionality
You can use model metric APIs to customize the Metrics Dashboard. Customizing the
dashboard extends your ability to use model metrics to assess that your model and code
comply with size, complexity, and readability requirements. This example shows how to
perform these Metrics Dashboard customizations:

• Configure compliance metrics to obtain compliance and issues metric data on your
Model Advisor configuration.

• Customize the dashboard layout by adding custom metrics, removing widgets, and
configuring existing widgets.

• Categorize metric data as compliant, warning, and noncompliant by specifying metric
threshold values.

Configure Compliance Metrics
Use the Metrics Dashboard and metric APIs to obtain compliance and issues metric data
on your Model Advisor configuration. To set up your Model Advisor configuration, see
“Organize Checks and Folders Using the Model Advisor Configuration Editor” on page 8-
5. You can also use an existing check group such as the MISRA checks. After you have
set up your Model Advisor configuration, follow these steps to specify the check groups
for which you want to obtain compliance and issues metric data:

1 Open the default configuration:

metricconfig=slmetric.config.Configuration.open();
2 Create a cell array consisting of the Check Group IDs that correspond to those check

groups. Obtain a Check Group ID by opening the Model Advisor Configuration Editor
and selecting the folder that contains the group of checks. The folder contains a
Check Group ID parameter.

values = {'maab', 'hisl_do178', '_SYSTEM_By Task_misra_c'};

The previous cell array specifies MAAB, High-Integrity, and MISRA check groups. The
values maab and hisl_do178 correspond to a subset of all MAAB and High-Integrity
System checks. To include all checks, specify the value for the Check Group ID
parameter from the Model Advisor Configuration Editor.

3 To set the configuration, pass the values cell array into the
setMetricFamilyParameterValues method. The 'ModelAdvisorStandard'

 Customize Metrics Dashboard Layout and Functionality

5-49

string is a standard string that you must supply to the
setMetricFamilyParameterValues method.

setMetricFamilyParameterValues(metricconfig,'ModelAdvisorStandard', values);
4 Open the default configuration for the Metrics Dashboard layout.

dashboardconfig = slmetric.dashboard.Configuration.open();
5 Obtain the slmetric.dashboard.Layout object from the

slmetric.dashboard.Configuration object.

layout = getDashboardLayout(dashboardconfig);
6 Obtain widget objects that are in the layout object.

layoutWidget = getWidgets(layout);
7 At the highest level, the default Metrics Dashboard contains an

slmetric.dashboard.Container object. This object contains an
slmetrics.dashboard.Container object and three
slmetrics.dashboard.Group objects. The red numbers on the diagram show their
order in the layoutWidget array. Obtain the compliance group from the layout.

complianceGroup = layoutWidget(3);

5 Model Metrics

5-50

8 The compliance group contains two containers. The first container contains the High
Integrity and MAAB Compliance and Check Issues widgets. The red numbers in the
preceding diagram also show the order of the three widgets that are in the first
container. Remove the High Integrity Compliance widget.

complianceContainers = getWidgets(complianceGroup);
complianceContainerWidgets = getWidgets(complianceContainers(1));
complianceContainers(1).removeWidget(complianceContainerWidgets(1));
setMetricIDs(complianceContainerWidgets(1),...
({'mathworks.metrics.ModelAdvisorCompliance._SYSTEM_By Task_misra_c'}));
complianceContainerWidgets(1).Labels={'MISRA'};

9 Create a custom widget for visualizing MISRA check issues metrics.

misraWidget = complianceContainers(1).addWidget('Custom', 1);
misraWidget.Title=('MISRA');
misraWidget.VisualizationType = 'RadialGauge';

 Customize Metrics Dashboard Layout and Functionality

5-51

misraWidget.setMetricIDs...
('mathworks.metrics.ModelAdvisorCheckCompliance._SYSTEM_By Task_misra_c');
misraWidget.setWidths(slmetric.dashboard.Width.Medium);

10 The bar chart widget visualizes the High Integrity and MAAB check groups. This
widget is third in the compliance group. Point this widget to the MISRA and MAAB
check groups.

setMetricIDs(complianceContainerWidgets(3),...
({'mathworks.metrics.ModelAdvisorCheckIssues._SYSTEM_By Task_misra_c',...
'mathworks.metrics.ModelAdvisorCheckIssues.maab'}));
complianceContainerWidgets(3).Labels = {'MISRA', 'MAAB'};

11 Save the configuration objects. These commands serialize the API information to XML
files.

save(metricconfig,'FileName','MetricConfig.xml');
save(dashboardconfig,'Filename','DashboardConfig.xml');

12 Set the active configurations.

slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

13 For your model, open the Metrics Dashboard.

metricsdashboard sf_car
14 Click the All Metrics button and run all metrics. The Metrics Dashboard displays

results for the MISRA checks instead of the High Integrity checks.

5 Model Metrics

5-52

15 Close the Metrics Dashboard.

Add a Custom Metric to Dashboard
Create a custom metric that counts nonvirtual blocks. To display this metric on the
Metrics Dashboard, specify a widget. Add it to the size group.

1 Create a custom metric class.

className = 'nonvirtualblockcount';
slmetric.metric.createNewMetricClass(className);

2 Create the nonvirtual block count metric by adding this code to the
nonvirtualblockcount.m file.
classdef nonvirtualblockcount < slmetric.metric.Metric
 %nonvirtualblockcount calculates number of nonvirtual blocks per level.
 % BusCreator, BusSelector and BusAssign are treated as nonvirtual.
 properties

 Customize Metrics Dashboard Layout and Functionality

5-53

 VirtualBlockTypes = {'Demux','From','Goto','Ground', ...
 'GotoTagVisiblity','Mux','SignalSpecification', ...
 'Terminator','Inport'};
 end

 methods
 function this = nonvirtualblockcount()
 this.ID = 'nonvirtualblockcount';
 this.Name = 'Nonvirtual Block Count';
 this.Version = 1;
 this.CompileContext = 'None';
 this.Description = 'Algorithm that counts nonvirtual blocks per level.';
 this.AggregatedValueName = 'Nonvirtual Blocks (incl. Descendants)';
 this.ValueName = 'Nonvirtual Blocks';
 this.ComponentScope = [Advisor.component.Types.Model, ...
 Advisor.component.Types.SubSystem];
 this.AggregationMode = slmetric.AggregationMode.Sum;
 this.AggregateComponentDetails = true;
 this.ResultChecksumCoverage = true;
 this.SupportsResultDetails = true;

 end

 function res = algorithm(this, component)
 % create a result object for this component
 res = slmetric.metric.Result();

 % set the component and metric ID
 res.ComponentID = component.ID;
 res.MetricID = this.ID;

 % Practice
 D1=slmetric.metric.ResultDetail('identifier 1','Name 1');
 D1.Value=0;
 D1.setGroup('Group1','Group1Name');
 D2=slmetric.metric.ResultDetail('identifier 2','Name 2');
 D2.Value=1;
 D2.setGroup('Group1','Group1Name');

 % use find_system to get all blocks inside this component
 blocks = find_system(getPath(component), ...
 'SearchDepth', 1, ...
 'Type', 'Block');

 isNonVirtual = true(size(blocks));

 for n=1:length(blocks)
 blockType = get_param(blocks{n}, 'BlockType');

 if any(strcmp(this.VirtualBlockTypes, blockType))
 isNonVirtual(n) = false;
 else
 switch blockType

5 Model Metrics

5-54

 case 'SubSystem'
 % Virtual unless the block is conditionally executed
 % or the Treat as atomic unit check box is selected.
 if strcmp(get_param(blocks{n}, 'IsSubSystemVirtual'), ...
 'on')
 isNonVirtual(n) = false;
 end
 case 'Outport'
 % Outport: Virtual when the block resides within
 % SubSystem block (conditional or not), and
 % does not reside in the root (top-level) Simulink window.
 if component.Type ~= Advisor.component.Types.Model
 isNonVirtual(n) = false;
 end
 case 'Selector'
 % Virtual only when Number of input dimensions
 % specifies 1 and Index Option specifies Select
 % all, Index vector (dialog), or Starting index (dialog).
 nod = get_param(blocks{n}, 'NumberOfDimensions');
 ios = get_param(blocks{n}, 'IndexOptionArray');

 ios_settings = {'Assign all', 'Index vector (dialog)', ...
 'Starting index (dialog)'};

 if nod == 1 && any(strcmp(ios_settings, ios))
 isNonVirtual(n) = false;
 end
 case 'Trigger'
 % Virtual when the output port is not present.
 if strcmp(get_param(blocks{n}, 'ShowOutputPort'), 'off')
 isNonVirtual(n) = false;
 end
 case 'Enable'
 % Virtual unless connected directly to an Outport block.
 isNonVirtual(n) = false;

 if strcmp(get_param(blocks{n}, 'ShowOutputPort'), 'on')
 pc = get_param(blocks{n}, 'PortConnectivity');

 if ~isempty(pc.DstBlock) && ...
 strcmp(get_param(pc.DstBlock, 'BlockType'), ...
 'Outport')
 isNonVirtual(n) = true;
 end
 end
 end
 end
 end

 blocks = blocks(isNonVirtual);

 res.Value = length(blocks);
 end
 end
end

 Customize Metrics Dashboard Layout and Functionality

5-55

3 Register the new metric in the metric repository.

[id_metric,err_msg] = slmetric.metric.registerMetric(className);
4 Remove the widget that represents the Simulink block count metric. This widget is

the first one in the size group. The size group is the second group in the Metrics
Dashboard container.

sizeGroup = layoutWidget(2);
sizeGroupWidgets = sizeGroup.getWidgets();
sizeGroup.removeWidget(sizeGroupWidgets(1));

5 Add a widget that displays the nonvirtual block count metric. For custom widgets, the
default visualization type is single value. If you want to use a different visualization
technique, specify a different value for the VisualizationType property.

newWidget = sizeGroup.addWidget('Custom', 1);
newWidget.Title=('Nonvirtual Block Count');
newWidget.setMetricIDs('nonvirtualblockcount');
newWidget.setWidths(slmetric.dashboard.Width.Medium);
newWidget.setHeight(70);

6 Specify whether there are lines separating the custom widget from other widgets in
the group. These commands specify that there is a line to the right of the widget.

s.top = false;
s.bottom = false;
s.left= false;
s.right= true;
newWidget.setSeparators([s, s, s, s]);

7 Save the configuration objects. These commands serialize the API information to XML
files.

save(metricconfig,'FileName','MetricConfig.xml');
save(dashboardconfig,'Filename','DashboardConfig.xml');

8 Set the active configurations.

slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

9 For your model, open the Metrics Dashboard.

metricsdashboard sf_car
10 Click the All Metrics button and run all metrics. The Metrics Dashboard displays

results for the Nonvirtual block count metric instead of the Simulink block count
metric.

5 Model Metrics

5-56

11 Close the Metrics Dashboard.

Add Metric Thresholds
For the two new custom metrics, specify metric threshold values. Specifying these values
enables you to access the quality of your model by categorizing your metric data as
follows:

• Compliant — Metric data that is in an acceptable range.
• Warning — Metric data that requires review.
• Noncompliant — Metric data that requires you to modify your model.

1 Access the slmetric.config.ThresholdConfiguration object in the
slmetric.config.Configuration object metricconfig.

 Customize Metrics Dashboard Layout and Functionality

5-57

TC=getThresholdConfigurations(metricconfig);
2 Add two slmetric.config.Threshold objects to TC. Each

slmetric.config.Threshold object contains a default
slmetric.config.Classification object that is compliant. Specify the
compliant metric ranges.
T1=addThreshold(TC,'mathworks.metrics.ModelAdvisorCheckIssues._SYSTEM_By Task_misra_c',...
 'AggregatedValue');
C=getClassifications(T1);
C.Range.Start=-inf;
C.Range.End=0;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

T2=addThreshold(TC,'mathworks.metrics.ModelAdvisorCheckCompliance._SYSTEM_By Task_misra_c',...
 'AggregatedValue');
C=getClassifications(T2);
C.Range.Start=1;
C.Range.End=inf;
C.Range.IncludeStart=1;
C.Range.IncludeEnd=0;

3 For each slmetric.config.Threshold object, specify the Warning ranges.

C=addClassification(T1,'Warning');
C.Range.Start=0;
C.Range.End=inf;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

C=addClassification(T2,'Warning');
C.Range.Start=-inf;
C.Range.End=1;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=0;

These commands specify that if the MISRA checks have issues, the model status is
warning. If there are no issues, the model status is compliant.

4 Add a third slmetric.config.Threshold object to TC. Specify compliant,
warning, and noncompliant ranges for this slmetric.config.Threshold object.

T3=addThreshold(TC,'nonvirtualblockcount', 'AggregatedValue');
C=getClassifications(T3);
C.Range.Start=-inf;
C.Range.End=20;
C.Range.IncludeStart=1;
C.Range.IncludeEnd=1;

5 Model Metrics

5-58

C=addClassification(T3, 'Warning');
C.Range.Start=20;
C.Range.End=30;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

C=addClassification(T3, 'NonCompliant');
C.Range.Start=30;
C.Range.End=inf;
C.Range.IncludeStart=0;
C.Range.IncludeEnd=1;

These commands specify that the compliant range is less than or equal to 20. The
warning range is from 20 up to but not including 30. The noncompliant range is
greater than 30.

5 Save the configuration objects. These commands serialize the API information to XML
files.

save(metricconfig,'FileName','MetricConfig.xml');
save(dashboardconfig,'Filename','DashboardConfig.xml');

6 Set the active configurations.

slmetric.config.setActiveConfiguration(fullfile(pwd, 'MetricConfig.xml'));
slmetric.dashboard.setActiveConfiguration(fullfile(pwd, 'DashboardConfig.xml'));

7 For your model, open the Metrics Dashboard.

metricsdashboard sf_car

 Customize Metrics Dashboard Layout and Functionality

5-59

For the MISRA check compliance issues, the gauge displays a warning (yellow)
because 76% of the checks pass. Any percentage less than 100% is a warning. The
bar chart also displays a warning because the model contains three MISRA check
issues. Any number greater than zero is a warning.

The Nonvirtual Block Count widget is in the compliant range because there are 15
nonvirtual blocks.

8 To reset the configuration and unregister the metric, execute these commands:

slmetric.metric.unregisterMetric(className);
slmetric.dashboard.setActiveConfiguration('');
slmetric.config.setActiveConfiguration('');

5 Model Metrics

5-60

See Also
slmetric.dashboard.Configuration | slmetric.config.Configuration

More About
• “Collect Model Metrics”
• “Collect and Explore Metric Data by Using the Metrics Dashboard” on page 5-2

 See Also

5-61

Overview of Customizing the Model
Advisor

6

Model Advisor Customization
Using Model Advisor APIs and the Model Advisor Configuration Editor, you can:

• Create your own Model Advisor checks.
• Create custom configurations.
• Specify the order in which you make changes to your model.
• Create multiple custom configurations for different projects or modeling guidelines,

and switch between these configurations in the Model Advisor.
• Deploy custom configurations to your users.

To See
Create Model Advisor checks. “Create Model Advisor Checks”
Format check results. “Format Check Results” on page 7-73
Create custom Model Advisor
configurations.

“Create Custom Configurations” on page 8-
2

Specify the order in which you make
changes to your model.

“Organize and Deploy Model Advisor
Checks”

Deploy custom configurations to your users. “Organize and Deploy Model Advisor
Checks”

Verify that models comply with modeling
guidelines.

“Check Model Compliance”

Requirements for Customizing the Model Advisor
Before customizing the Model Advisor:

• If you want to create checks, know how to create a MATLAB script. For more
information, see “Create Scripts” (MATLAB).

• Understand how to access model constructs that you want to check. For example,
know how to find block and model parameters. For more information on using utilities
for creating check callbacks, see “Common Utilities for Creating Checks” on page 7-
5.

6 Overview of Customizing the Model Advisor

6-2

Create Model Advisor Checks

7

Create Model Advisor Checks Workflow
1 On your MATLAB path, create a recustomization file named sl_customization.m.

In this file, create a sl_customization() function to register the custom checks
that you create with the Model Advisor. For detailed information, see “Register
Checks” on page 7-41.

2 Define custom checks and where they appear in the Model Advisor. For detailed
information, see “Define Custom Checks” on page 7-46.

3 Specify what actions you want the Model Advisor to take for the custom checks by
creating a check callback function for each custom check. For detailed information,
see “Create Callback Functions and Results” on page 7-54.

4 Optionally, specify what automatic fix operations the Model Advisor performs by
creating an action callback function. For detailed information, see “Action Callback
Function” on page 7-63.

7 Create Model Advisor Checks

7-2

Customization File Overview
A customization file is a MATLAB file that you create and name sl_customization.m.
The sl_customization.m file contains a set of functions for registering and defining
custom checks, tasks, and groups. To set up the sl_customization.m file, follow the
guidelines in this table.

Function Description When Required
sl_customization() Registers custom checks, tasks,

folders, and callbacks with the
Simulink customization
manager at startup. See
“Register Checks” on page 7-
41.

Required for customizations to
the Model Advisor.

One or more check definitions Defines custom checks. See
“Define Custom Checks” on
page 7-46.

Required for custom checks and
to add custom checks to the By
Product folder.

If the By Product folder is not
displayed in the Model Advisor
window, select Show By
Product Folder from the
Settings > Preferences dialog
box.

Check callback functions Defines the actions of the
custom checks. See “Create
Callback Functions and Results”
on page 7-54.

Required for custom checks.
You must write one callback
function for each custom check.

One or more calls to check input
parameters

Specifies input parameters to
custom checks. See “Define
Check Input Parameters” on
page 7-50.

Optional

One or more calls to checklist
views

Specifies calls to the Model
Advisor Result Explorer for
custom checks. See “Define
Model Advisor Result Explorer
Views” on page 7-51.

Optional

 Customization File Overview

7-3

Function Description When Required
One or more calls to check
actions

Specifies actions the software
performs for custom checks.
See “Define Check Actions” on
page 7-52 and “Action Callback
Function” on page 7-63.

Optional

This example shows a custom configuration of the model Advisor that has custom checks
defined in custom folders and procedures. The selected check includes input parameters,
list view parameters, and actions.

7 Create Model Advisor Checks

7-4

Common Utilities for Creating Checks
When you create a custom check, there are common Simulink utilities that you can use to
make the check perform different actions. Following is a list of utilities and when to use
them. In the Utility column, click the link for more information about the utility.

Utility Used For...
find_system Getting handle or path to:

• Blocks
• Lines
• Annotations

When getting the object, you can:

• Specify a search depth
• Search under masks and libraries

get_param / set_param Getting and setting system and block
parameter values.

Property Inspector Getting object properties. First you must
get a handle to the object.

evalin Working in the base workspace.
Simulink identifier (SID) Identifying Simulink blocks, model

annotations or Stateflow objects. The SID is
a unique number within the model,
assigned by Simulink. For details, see
“Locate Diagram Components Using
Simulink Identifiers” (Simulink).

Stateflow API (Stateflow) Programmatic access to Stateflow objects.

 Common Utilities for Creating Checks

7-5

Create and Add Custom Checks - Basic Examples
To See
Add a customized check to a Model Advisor
By Product > Demo subfolder.

“Add Custom Check to by Product Folder”
on page 7-6

Create a Model Advisor pass/fail check. “Create Customized Pass/Fail Check” on
page 7-7

Create a Model Advisor pass/fail check with
a fix action.

“Create Customized Pass/Fail Check with
Fix Action” on page 7-10

Create a Model Advisor pass/fail check with
detailed result collections

“Create Customized Pass/Fail Check with
Detailed Result Collections” on page 7-14

Add Custom Check to by Product Folder
This example shows how to add a custom check to a Model Advisor By Product > Demo
subfolder. In this example, the customized check does not check model elements.

1 In your working folder, create the sl_customization.m file. This file registers and
creates the check registration function defineModelAdvisorChecks, which in turn
registers the check callback function SimpleCallback. The function
defineModelAdvisorChecks uses a ModelAdvisor.Root object to define the
check interface.

function sl_customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('exampleCheck');
rec.Title = 'Example of a customized check';
rec.TitleTips = 'Added customized check to Product Folder';
rec.setCallbackFcn(@SimpleCallback,'None','StyleOne');
mdladvRoot.publish(rec, 'Demo');

% --- creates SimpleCallback function
function result = SimpleCallback(system);
result={};

2 Close the Model Advisor and your model if either are open.
3 In the Command Window, enter:

7 Create Model Advisor Checks

7-6

Advisor.Manager.refresh_customizations
4 From the MATLAB window, select New > Simulink Model to open a new Simulink

model window.
5 From the model window, select Analysis > Model Advisor > Model Advisor to

open the Model Advisor.
6 A System Selector — Model Advisor dialog box opens. Click OK. The Model

Advisor window opens. It might take a few minutes.
7 If the By Product folder is not displayed in the Model Advisor window, select Show

By Product Folder from the Settings > Preferences dialog box.
8 In the left pane, expand the By Product folder to display the subfolders. The

customized check Example of a customized check appears in the By Product >
Demo subfolder.

The following commands in the sl_customization.m file create the right pane of
the Model Advisor.

rec.Title = 'Example of a customized check';
rec.TitleTips = 'Added customized check to Product Folder';

Create Customized Pass/Fail Check
This example shows how to create a Model Advisor pass/fail check. In this example, the
Model Advisor checks Constant blocks. If a Constant blocks value is numeric, the check
fails.

1 In your working folder, update the sl_customization.m file. This file registers and
creates the check registration function defineModelAdvisorChecks, which also
registers the check callback function SimpleCallback. The function
SimpleCallback creates a check that finds Constant blocks that have numeric
values. SimpleCallback uses the Model Advisor format template.

 Create and Add Custom Checks - Basic Examples

7-7

function sl_customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('exampleCheck');
rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if' ...
 ' Constant block value is a letter'];
rec.setCallbackFcn(@SimpleCallback,'None','StyleOne')

mdladvRoot.publish(rec, 'Demo');

% --- SimpleCallback function that checks constant blocks
function result = SimpleCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
result = {};

all_constant_blk=find_system(system,'LookUnderMasks','all',...
 'FollowLinks','on','BlockType','Constant');
blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for constant blocks that'...
 ' use numeric values']);
if ~isempty(blk_with_value)
 ft.setSubResultStatusText(['Check has failed. The following '...
 'Constant blocks have numeric values:']);
 ft.setListObj(blk_with_value);
 ft.setSubResultStatus('warn');
 ft.setRecAction('Parameterize the constant block');
 mdladvObj.setCheckResultStatus(false);
else
 ft.setSubResultStatusText(['Check has passed. No constant blocks'...
 ' with numeric values were found.']);
 ft.setSubResultStatus('pass');
 mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);
result{end+1} = ft;

2 Close the Model Advisor and your model if either are open.
3 In the Command Window, enter:

Advisor.Manager.refresh_customizations
4 From the MATLAB window, select New > Simulink Model to open a new Simulink

model window.
5 In the Simulink model window, create two Constant blocks named Const_one and

Const_1:

7 Create Model Advisor Checks

7-8

• Right-click the Const_one block, choose Constant Parameters, and assign a
Constant value of one.

• Right-click the Const_1 block, choose Constant Parameters, and assign a
Constant value of 1.

• Save your model as example2_qs

6 From the model window, select Analysis > Model Advisor > Model Advisor to
open the Model Advisor.

7 A System Selector — Model Advisor dialog box opens. Click OK. The Model
Advisor window opens.

8 If the By Product folder is not displayed in the Model Advisor window, select Show
By Product Folder from the Settings > Preferences dialog box.

9 In the left pane, select By Product > Demo > Check Constant block usage.
10 Select Run This Check. The Model Advisor check fails for the Const_1 block and

displays a Recommended Action.

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Check Constant block usage
rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if' ...
 ' Constant block value is a letter'];

 Create and Add Custom Checks - Basic Examples

7-9

Recommended Action

ft.setInformation(['This check looks for constant blocks that'...
 ' use numeric values']);
ft.setSubResultStatusText(['Check has failed. The following '...
 'Constant blocks have numeric values:']);
ft.setListObj(blk_with_value);
ft.setSubResultStatus('warn');
ft.setRecAction('Parameterize the constant block');

11 Follow the Recommended Action for fixing the failed Constant block. In the Model
Advisor dialog box:

• Double-click the example2_qs/Const_1 hyperlink.
• Change Constant Parameters > Constant value to two, or a nonnumeric value.
• Rerun the Model Advisor check. Both Constant blocks now pass the check.

Create Customized Pass/Fail Check with Fix Action
This example shows how to create a Model Advisor pass/fail check with a fix action. In
this example, the Model Advisor checks Constant blocks. If a Constant block value is
numeric, the check fails. The Model Advisor is also customized to create a fix action for
the failed checks.

1 In your working folder, update the sl_customization.m file. This file contains
three functions, each of which use the Model Advisor format template:

• defineModelAdvisorChecks — Defines the check, creates input parameters,
and defines the fix action.

• simpleCallback — Creates the check callback function that finds Constant
blocks with numeric values.

• simpleActionCallback — Creates the fix for Constant blocks that fail the
check.

function sl_customization(cm)

% --- register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('exampleCheck');
rec.Title = 'Check Constant block usage';

7 Create Model Advisor Checks

7-10

rec.TitleTips = ['Fail if Constant block value is a number; Pass if '...
 'Constant block value is a letter'];
rec.setCallbackFcn(@SimpleCallback,'None','StyleOne')

% --- input parameters
rec.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Text entry example';
inputParam1.Value='VarNm';
inputParam1.Type='String';
inputParam1.Description='sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec.setInputParameters({inputParam1});

% -- set fix operation
myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@simpleActionCallback);
myAction.Name='Fix Constant blocks';
myAction.Description=['Click the button to update all blocks with'...
 ' Text entry example'];
rec.setAction(myAction);

mdladvRoot.publish(rec, 'Demo');

% --- SimpleCallback function that checks constant blocks
function result = SimpleCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
result = {};

all_constant_blk=find_system(system,'LookUnderMasks','all',...
 'FollowLinks','on','BlockType','Constant');
blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');

ft = ModelAdvisor.FormatTemplate('ListTemplate');
ft.setInformation(['This check looks for constant blocks that'...
 ' use numeric values']);
if ~isempty(blk_with_value)
 ft.setSubResultStatusText(['Check has failed. The following '...
 'Constant blocks have numeric values:']);
 ft.setListObj(blk_with_value);
 ft.setSubResultStatus('warn');
 ft.setRecAction('Parameterize the constant block');
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
else
 ft.setSubResultStatusText(['Check has passed. No constant blocks'...
 'with numeric values were found.']);
 ft.setSubResultStatus('pass');
 mdladvObj.setCheckResultStatus(true);
end
ft.setSubBar(0);
result{end+1} = ft;

% --- creates SimpleActionCallback function that fixes failed check

 Create and Add Custom Checks - Basic Examples

7-11

function result = simpleActionCallback(taskobj)
mdladvObj = taskobj.MAObj;
result = {};

system = getfullname(mdladvObj.System);

% Get the string from the input parameter box.
inputParams = mdladvObj.getInputParameters;
textEntryEx = inputParams{1}.Value;

all_constant_blk=find_system(system,'LookUnderMasks','all',...
 'FollowLinks','on','BlockType','Constant');
blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');
ft = ModelAdvisor.FormatTemplate('TableTemplate');
% Define table col titles
ft.setColTitles({'Block','Old Value','New Value'})
for inx=1:size(blk_with_value)
 oldVal = get_param(blk_with_value{inx},'Value');
 ft.addRow({blk_with_value{inx},oldVal,textEntryEx});
 set_param(blk_with_value{inx},'Value',textEntryEx);
end

ft.setSubBar(0);
result = ft;
mdladvObj.setActionEnable(false);

2 Close the Model Advisor and your model if either are open.
3 At the command prompt, enter:

Advisor.Manager.refresh_customizations
4 From the Command Window, select New > Simulink Model to open a new model.
5 In the Simulink model window, create two Constant blocks named Const_one and

Const_1:

• Right-click the Const_one block, choose Constant Parameters, and assign a
Constant value of one.

• Right-click the Const_1 block, choose Constant Parameters, and assign a
Constant value of 1.

• Save your model as example3_qs.
6 From the model window, select Analysis > Model Advisor > Model Advisor to

open the Model Advisor.
7 A System Selector — Model Advisor dialog box opens. Click OK. The Model

Advisor window opens. It might take a few minutes.
8 If the By Product folder is not displayed in the Model Advisor window, select Show

By Product Folder from the Settings > Preferences dialog box.

7 Create Model Advisor Checks

7-12

9 In the left pane, select By Product > Demo > Check Constant block usage.
10 Select Run This Check. The Model Advisor check fails for the Const_1 block.

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Check Constant block usage
rec.Title = 'Check Constant block usage';
rec.TitleTips = ['Fail if Constant block value is a number; Pass if '...
 'Constant block value is a letter'];
rec.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Text entry example';
inputParam1.Value='VarNm';
inputParam1.Type='String';
inputParam1.Description='sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec.setInputParameters({inputParam1});

Action

myAction.Name='Fix Constant blocks';
myAction.Description=['Click the button to update all blocks with'...
 'Text entry example'];

The Model Advisor box has a Fix Constant blocks button in the Action section of
the Model Advisor dialog box.

 Create and Add Custom Checks - Basic Examples

7-13

11 In the Model Advisor Dialog box, enter a nonnumeric value in the Text entry
example parameter field in the Analysis section of the Model Advisor dialog box. In
this example, the value is VarNm.

12 Click Fix Constant blocks. The Const_1 Constant block value changes from 1 to
the nonnumeric value that you entered in step 10. The Result section of the dialog
box lists the Old Value and New Value of the Const_1 block.

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Action

ft = ModelAdvisor.FormatTemplate('TableTemplate');

ft.setColTitles({'Block','Old Value','New Value'})
for inx=1:size(blk_with_value)
 oldVal = get_param(blk_with_value{inx},'Value');
 ft.addRow({blk_with_value{inx},oldVal,textEntryEx});
 set_param(blk_with_value{inx},'Value',textEntryEx);
end

13 In the Model Advisor dialog box, click Run This Check. Both constant blocks now
pass the check.

Create Customized Pass/Fail Check with Detailed Result
Collections
This example shows how to create a Model Advisor check whose results are collected into
a group, such as blocks in a subsystem that violate a check. When a check is not violated,
the results contain the check description and result status. When a check is violated, the
results contain the check description, result status, and the recommended action to fix
the issue. This is the recommended method to use when creating custom Model Advisor
checks.

7 Create Model Advisor Checks

7-14

You can review results in the Model Advisor by selecting:

• View By > Recommended Action ─ When a check is violated, this view shows a list
of model elements that violate the check. When there is no violation, this view
provides a brief description stating that the check was not violated.

• View By > Subsystem ─ This view shows a table of model elements that violate the
check, organized by model or subsystem (when applicable).

• View By > Block ─ This view provides a list of check violations for each block.

When a check does not pass, results include a hyperlink to each model element that
violates the check. Use these hyperlinks to easily locate areas in your model or
subsystem.

To create a customized check with detailed result presented as a collection:

1 In your working folder, update the sl_customization.m file as shows below. This
file contains three functions specific for creating a check whose results are presented
on the Model Advisor as a collection:

• defineModelAdvisorChecks ─ Defines the check and fix actions. In this
function, the callback style is 'DetailStyle', which is the Model Advisor format
template that present the results as a collection in the Model Advisor.

• SampleNewCheckStyleCallback ─ Creates the check callback function that
finds blocks whose name is not located below the block. The function uses name
and value pairs to gather the results into collections. See “Check Callback
Function for Detailed Result Collections” on page 7-61.

• sampleActionCB0 ─ Creates the fix for blocks whose name is not located below
the block. In this example, it moves the name below the block. See “Action
Callback Function for Detailed Result Collections” on page 7-64.

function sl_customization(cm)

% -----------------------------
% Register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% -----------------------------
% Define Model Advisor check "Check whether block names appear
% below blocks".
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;
rec = ModelAdvisor.Check('com.mathworks.sample.Check0');
rec.Title = 'Check whether block names appear below blocks
 (recommended check style)';

 Create and Add Custom Checks - Basic Examples

7-15

rec.TitleTips = 'Example new style callback (recommended
 check style)';
rec.setCallbackFcn(@SampleNewCheckStyleCallback,'None',
 'DetailStyle');
% set fix operation
myAction0 = ModelAdvisor.Action;
myAction0.setCallbackFcn(@sampleActionCB0);
myAction0.Name='Make block names appear below blocks';
myAction0.Description='Click the button to place block
 names below blocks';
rec.setAction(myAction0);
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% -----------------------------
% Callback function for check "Check whether block names appear
% below blocks".
function SampleNewCheckStyleCallback(system, CheckObj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
% find all blocks whose name does not appear below blocks
violationBlks = find_system(system, 'Type','block',...
 'NamePlacement','alternate',...
 'ShowName', 'on');
if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'Identify blocks where the name is
 not displayed below the block.';
 ElementResults.Status = 'All blocks have names displayed below
 the block.';
 mdladvObj.setCheckResultStatus(true);
else
 ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
 for i=1:numel(ElementResults)
 ElementResults(i).setData(violationBlks{i});
 ElementResults(i).Description = 'Identify blocks where the
 name is not displayed below the block.';
 ElementResults(i).Status = 'The following blocks have names
 that do not display below the blocks:';
 ElementResults(i).RecAction = 'Change the location such that
 the block name is below the block.';
 end
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
end
CheckObj.setResultDetails(ElementResults);

% -----------------------------
% Action callback function for check "Check whether block names
% appear below blocks".
function result = sampleActionCB0(taskobj)
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;
resultDetailObjs = checkObj.ResultDetails;
for i=1:numel(resultDetailObjs)
 % take some action for each of them

7 Create Model Advisor Checks

7-16

 block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
 set_param(block,'NamePlacement','normal');
end
result = ModelAdvisor.Text('Changed the location such that the
block name is below the block.');
mdladvObj.setActionEnable(false);

2 Close the Model Advisor and your model if either are open.
3 In the MATLAB command window, enter:

Advisor.Manager.refresh_customizations
4 From the MATLAB window, open model sldemo_fuelsys.
5 In the Simulink model window:

• In the top model, right-click the Engine Speed block and select Rotate & Flip >
Flip Block Name.

• Open the fuel_rate_control subsystem. Right-click the
validate_sample_time block and select Rotate & Flip > Flip Block Name.

Return to the top model and save as example_sldemo_fuelsys.
6 From the model window, select Analysis > Model Advisor > Model Advisor to

open the Model Advisor.
7 A System Selector — Model Advisor dialog box opens. Click OK. The Model

Advisor window opens.
8 In the left pane, select By Product > Demo > Check whether block names

appear below blocks.

Note If the By Product folder is not displayed in the Model Advisor window, select
SettingsPreferencesShow By Product Folder.

9 Select Run This Check. The Model Advisor check fails for the blocks.
10 Review the results by selecting one of the View by options.

 Create and Add Custom Checks - Basic Examples

7-17

The report provides a recommended action for each check. You can click the
hyperlink path to open the violating block in the model editor. For example,

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Check title and subtitle
rec.Title = 'Check whether block names appear below blocks
 (recommended check style)';
rec.TitleTips = 'Example new style callback (recommended
 check style)';

Result
ElementResults(i).Description = 'Identify blocks where the name is
 not displayed below the block.';
ElementResults(i).Status = 'The following blocks have names that do
 not display below the blocks:';

7 Create Model Advisor Checks

7-18

ElementResults(i).RecAction = 'Change the location such that the block
 name is below the block.';

Action
myAction0.Name='Make block names appear below blocks';
myAction0.Description='Click the button to place block names
 below blocks';

11 Follow the recommended action for fixing the violating blocks by using one of these
methods:

• Update each violation individually by double-clicking on the hyperlink to open the
block. Right-click on the block and select Rotate & Flip > Flip Block Name.

• Select the Make block names appear below blocks button. The Model Advisor
automatically fixes the issues in the model. Notice the button is greyed out after
all violations are fixed.

12 Save the model and rerun the Model Advisor check. The check passes.

The following commands in the sl_customization.m file create the right pane in
the Model Advisor.

Result
ElementResults.Description = 'Identify blocks where the name is not
 displayed below the block.';
ElementResults.Status = 'All blocks have names displayed below the block.';

See Also
ModelAdvisor.Action | ModelAdvisor.FormatTemplate

 See Also

7-19

More About
• “Register Checks” on page 7-41
• “Define Check Input Parameters” on page 7-50
• “Check Callback Function for Detailed Result Collections” on page 7-61
• “Action Callback Function for Detailed Result Collections” on page 7-64

7 Create Model Advisor Checks

7-20

Create Check for Model Configuration Parameters
To verify the configuration parameters for your model, you can create a configuration
parameter check.

Decide which configuration parameter settings to use for your model.

Guidelines See
MathWorks Automotive Advisory Board
(MAAB) Control Algorithm Modeling
Guidelines

“Model Configuration Options” (Simulink)

High-Integrity System Modeling Guideline “Configuration Parameter Considerations”
(Simulink)

Code Generation Modeling Guidelines “Code Generation” (Simulink)

1 Create an XML data file containing the configuration parameter settings you want to
check. You can use
Advisor.authoring.generateConfigurationParameterDataFile or
manually create the file yourself.

2 Register the model configuration parameter check using an sl_customization.m
file.

3 Run the check on your models.

Create Data File for Diagnostics Pane Configuration
Parameter Check
This example shows how to create a data file for Diagnostics pane model configuration
parameter check that warns when:

• Algebraic loop is set to none
• Minimize algebraic loop is not set to error
• Block Priority Violation is not set to error

In the example, to create the data file, you use the
Advisor.authoring.generateConfigurationParameterDataFile function.

At the command prompt, type vdp.

 Create Check for Model Configuration Parameters

7-21

matlab: vdp

In the model window, select Simulation > Model Configuration Parameters. In the
Diagnostics pane, set the configuration parameters as follows:

• Algebraic loop to none
• Minimize algebraic loop to error
• Block Priority Violation to error

Use Advisor.authoring.generateConfigurationParameterDataFile to create a
data file specifying configuration parameter constraints in the Diagnostics pane.
Additionally, to create a check with a fix action, set FixValue to true. At the command
prompt, type:
model='vdp';
dataFileName = 'ex_DataFile.xml';
Advisor.authoring.generateConfigurationParameterDataFile(dataFileName,...
model, 'Pane', 'Diagnostics', 'FixValues', true);

In the Command Window, select ex_DataFile.xml. The data file opens in the MATLAB
editor.

• The Minimize algebraic loop (command-line: ArtificialAlgebraicLoopMsg)
configuration parameter tagging specifies a value of error with a fixvalue of
error. When you run the configuration parameter check using ex_DataFile.xml,
the check fails if the Minimize algebraic loop setting is not error. The check fix
action modifies the setting to error.

• The Block Priority Violation (command-line:BlockPriorityViolationMsg)
configuration parameter tagging specifies a value of error with a fixvalue of
error. When you run the configuration parameter check using ex_DataFile.xml,
the check fails if the Block Priority Violation setting is not error. The check fix
action modifies the setting to error.

In ex_DataFile.xml, edit the Algebraic loop (command-line:AlgebraicLoopMsg)
parameter tagging so that the check warns if the value is none. Because you are
specifying a configuration parameter that you do not want, you need a
NegativeModelParameterConstraint. Additionally, to create a subcheck that does
not have a fix action, remove the line with <fixvalue> tagging. The tagging for the
configuration parameter looks as follows:

<!-- Algebraic loop: (AlgebraicLoopMsg)-->
 <NegativeModelParameterConstraint>
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 </NegativeModelParameterConstraint>

7 Create Model Advisor Checks

7-22

In ex_DataFile.xml, delete the lines with tagging for configuration parameters that
you do not want to check. The data file ex_DataFile.xml has tagging only for
Algebraic loop, Minimize algebraic loop and Block Priority Violation.
ex_DataFile.xml looks similar to:

<?xml version="1.0" encoding="utf-8"?>
<customcheck xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">
 <checkdata>
<!-- Algebraic loop: (AlgebraicLoopMsg)-->
 <NegativeModelParameterConstraint>
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 </NegativeModelParameterConstraint>
<!--Minimize algebraic loop: (ArtificialAlgebraicLoopMsg)-->
 <PositiveModelParameterConstraint>
 <parameter>ArtificialAlgebraicLoopMsg</parameter>
 <value>error</value>
 <fixvalue>error</fixvalue>
 </PositiveModelParameterConstraint>
<!--Block priority violation: (BlockPriorityViolationMsg)-->
 <PositiveModelParameterConstraint>
 <parameter>BlockPriorityViolationMsg</parameter>
 <value>error</value>
 <fixvalue>error</fixvalue>
 </PositiveModelParameterConstraint>
 </checkdata>
</customcheck>

Verify the data syntax with Advisor.authoring.DataFile.validate. At the
command prompt, type:

 dataFile = 'myDataFile.xml';
 msg = Advisor.authoring.DataFile.validate(dataFile);

 if isempty(msg)
 disp('Data file passed the XSD schema validation.');
 else

 Create Check for Model Configuration Parameters

7-23

 disp(msg);
 end

Create Check for Diagnostics Pane Model Configuration
Parameters
This example shows how to create a check for Diagnostics pane model configuration
parameters using a data file and an sl_customization file. First, you register the check
using an sl_customization file. Using ex_DataFile.xml, the check warns when:

• Algebraic loop is set to none
• Minimize algebraic loop is not set to error
• Block Priority Violation is not set to error

The check fix action modifies the Minimize algebraic loop and Block Priority
Violation settings to error.

The check uses the ex_DataFile.xml data file created in “Create Data File for
Diagnostics Pane Configuration Parameter Check” on page 7-21.

Close the Model Advisor and your model if either are open.

Use the following sl_customization.m file to specify and register check Example:
Check model configuration parameters.
function sl_customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register items to factory group.
cm.addModelAdvisorTaskFcn(@defineModelAdvisorGroups);

%% defineModelAdvisorChecks
function defineModelAdvisorChecks

 rec = ModelAdvisor.Check('com.mathworks.Check1');
 rec.Title = 'Example: Check model configuration parameters';
 rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback...
 (system)), 'None', 'StyleOne');
 rec.TitleTips = 'Example check for model configuration parameters';

 % --- data file input parameters
 rec.setInputParametersLayoutGrid([1 1]);
 inputParam1 = ModelAdvisor.InputParameter;

7 Create Model Advisor Checks

7-24

 inputParam1.Name = 'Data File';
 inputParam1.Value = 'ex_DataFile.xml';
 inputParam1.Type = 'String';
 inputParam1.Description = 'Name or full path of XML data file.';
 inputParam1.setRowSpan([1 1]);
 inputParam1.setColSpan([1 1]);
 rec.setInputParameters({inputParam1});

 % -- set fix operation
 act = ModelAdvisor.Action;
 act.setCallbackFcn(@(task)(Advisor.authoring.CustomCheck.actionCallback...
 (task)));
 act.Name = 'Modify Settings';
 act.Description = 'Modify model configuration settings.';
 rec.setAction(act);

 mdladvRoot = ModelAdvisor.Root;
 mdladvRoot.register(rec);

%% defineModelAdvisorGroups
function defineModelAdvisorGroups
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group 1
rec = ModelAdvisor.FactoryGroup('com.mathworks.Test.factoryGroup');
rec.DisplayName='Example: My Group';
rec.addCheck('com.mathworks.Check1');
mdladvRoot.publish(rec);

Create the Example: Check model configuration parameters. At the command
prompt, enter:

Advisor.Manager.refresh_customizations

At the command prompt, type vdp.

In the model window, select Simulation > Model Configuration Parameters. In the
Diagnostics pane, to trigger check warnings, set the configuration parameters as
follows:

• Algebraic loop to none
• Minimize algebraic loop to warning
• Block Priority Violation to warning

From the model window, select Analysis > Model Advisor > Model Advisor to open the
Model Advisor.

In the left pane, select By Task > Example: My Group > Example: Check model
configuration parameters. In the right pane, Data File is set to ex_DataFile.xml.

 Create Check for Model Configuration Parameters

7-25

matlab: vdp

Click Run This Check. The Model Advisor check warns that the configuration
parameters are not set to the values specified in ex_DataFile.xml. For configuration
parameters with positive constraint tagging (PositiveModelParameterConstraint),
the recommended values are obtained from the value tagging. For configuration
parameters with negative constraint tagging (NegativeModelParameterConstraint),
the values not recommended are obtained from the value tagging.

• Algebraic loop(AlgebraicLoopMsg) - the ex_DataFile.xml tagging does not
specify a fix action for AlgebraicLoopMsg. The subcheck passes only when the
setting is not set to none.

• Minimize algebraic loop(ArtificialAlgebraicLoopMsg) - the
ex_DataFile.xml tagging specifies a subcheck with a fix action for
ArtificialAlgebraicLoopMsg that passes only when the setting is error. The fix
action modifies the setting to error.

• Block priority violation(BlockPriorityViolationMsg) - the ex_DataFile.xml
tagging specifies a subcheck with a fix action for BlockPriorityViolationMsg that
does not pass when the setting is warning. The fix action modifies the setting to
error.

In the Action section of the Model Advisor dialog box, click Modify Settings. Model
Advisor updates the configuration parameters for Block priority violation and
Minimize algebraic loop.

Run By Task > Example: My Group > Example: Check model configuration
parameters. The check warns because Algebraic loop is set to none.

In the right pane of the Model Advisor window, use the Algebraic loop
(AlgebraicLoopMsg) link to open the Simulation > Model Configuration
Parameters > Diagnostics. Set Algebraic loop to warning or error.

Run By Task > Example: My Group > Example: Check model configuration
parameters. The check passes.

Data File for Configuration Parameter Check
You use an XML data file to create a configuration parameter check. To create the data
file, you can use Advisor.authoring.generateConfigurationParameterDataFile
or manually create the file yourself. The data file contains tagging that specifies check
behavior. Each model configuration parameter specified in the data file is a subcheck. The
structure for the data file is as follows:

7 Create Model Advisor Checks

7-26

<?xml version="1.0" encoding="utf-8"?>
<customcheck xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.w3schools.com
MySchema.xsd">
<messages>
 <Description>Description of check</Description>
 <PassMessage>Pass message</PassMessage>
 <FailMessage>Fail message</FailMessage>
 <RecommendedActions>Recommended action</RecommendedActions>
</messages>
<checkdata>
<!--Command-line name of configuration parameter-->
 <PositiveModelParameterConstraint>
 <parameter>Command-line name of configuration parameter</parameter>
 <value>Value that you want configuration parameter to have</value>
 <fixvalue>Specify value for a fix action</fixvalue>
 <dependson>ID of configuration parameter subcheck that must pass
 before this subcheck runs</value>
 </PositiveModelParameterConstraint>
<!-- Command-line name of configuration parameter-->
 <NegativeModelParameterConstraint>
 <parameter>Command-line name of configuration parameter</parameter>
 <value>Value that you do not want configuration parameter to have</value>
 <fixvalue>Specify value for a fix action</fixvalue>
 <dependson>ID of configuration parameter subcheck that must pass
 before this subcheck runs</value>
 </NegativeModelParameterConstraint>
 </checkdata>
</customcheck>

The <messages> tagging is optional.
Advisor.authoring.generateConfigurationParameterDataFile does not
generate <messages> tagging. The <messages> tagging contains:

• <Description> - Description of the check. Displayed in Model Advisor window.
Optional.

• <PassMessage> - Pass message displayed in Model Advisor window. Optional.
• <FailMessage> - Fail message displayed in Model Advisor window. Optional.
• <RecommendedActions> - Recommended actions displayed in Model Advisor window

when check does not pass. Optional.

Within the <checkdata> tagging, the data file specifies two types of constraints:

• <PositiveModelParameterConstraint> - Specifies the configuration parameter
setting that you want.

• <NegativeModelParameterConstraint> - Specifies the configuration parameter
setting that you do not want.

 Create Check for Model Configuration Parameters

7-27

Within the tagging for each of the two types of constraints, for each configuration
parameter that you want to check, the data file has the following tags:

• parameter - Specifies the configuration parameter that you want to check. The
tagging uses the command-line name for the configuration parameter. For example:

• <parameter>AlgebraicLoopMsg</parameter>
• <parameter>BlockPriorityViolationMsg</parameter>

• value - For PositiveModelParameterConstraint constraints, specifies the
setting(s) that you want for the configuration parameter. For
NegativeModelParameterConstraint, specifies the setting(s) you that do not
want for the configuration parameter. You can specify more than one value tag. Values
can have the following formats:

• For a scalar value:

<value>xyz</value>
• For a structure or object:

<value><param1>xyz</param1><param2>yza</param2></value>
• For an array:

<value><element>value</element><element>value</element></value>

For example:

• PositiveModelParameterConstraint constraints that warn when the setting is
not error:

<value>error</value>
• NegativeModelParameterConstraint constraints that warn when the setting is

none or warning:

<value>none</value>
<value>warning</value>

• PositiveModelParameterConstraint constraints that warn when the setting is
not a valid structure:

<value>
 <double>a</double>
 <single>b</single>
</value>

7 Create Model Advisor Checks

7-28

• NegativeModelParameterConstraint constraints that warn when the setting is
an invalid array:

<value>
 <element>A</element>
 <element>B</element>
</value>

• fixvalue - Specifies the setting to use when applying the Model Advisor fix action.
Optional. Fix values can have the following formats:

• For a scalar value:

<fixvalue>xyz</fixvalue>
• For a structure or object:

<fixvalue><param1>xyz</param1><param2>yza</param2></fixvalue>
• For an array:

<fixvalue><element>value</element><element>value</element></fixvalue>

For example:

• Fix action to modify configuration parameter setting to error:

<fixvalue>error</fixvalue>
• Fix action to modify configuration parameter setting to warning:

<fixvalue>warning</fixvalue>
• Fix action to modify configuration parameter setting to a structure:

<fixvalue>
 <double>a</double>
 <single>b</single>
</fixvalue>

• Fix action to modify configuration parameter setting to an array:

<fixvalue>
 <element>A</element>
 <element>B</element>
</fixvalue>

• dependson - Specifies a prerequisite subcheck. Optional. For example, to specify that
configuration parameter subcheck ID_B must pass before configuration parameter
subcheck ID_A is run, use this tagging:

 Create Check for Model Configuration Parameters

7-29

<PositiveModelParameterConstraint id="ID_A">
<dependson>ID_B</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying a configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. If
the configuration parameter is set to Fixed-Step, the subcheck passes.

<PositiveModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter
AlgebraicLoopMsg. If the configuration parameter is set to none or warning, the
subcheck passes. If the subcheck does not pass, the check fix action modifies the
configuration parameter to error.

<PositiveModelParameterConstraint id="ID_A">
 <parameter>AlgebraicLoopMsg</parameter>
 <value>none</value>
 <value>warning</value>
 <fixvalue>error</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying an array type configuration parameter

<PositiveModelParameterConstraint id="A">
 <parameter>ReservedNameArray</parameter>
 <value>
 <element>A</element>
 <element>B</element>
 </value>
 <value>
 <element>A</element>
 <element>C</element>
 </value>
</PositiveModelParameterConstraint>

7 Create Model Advisor Checks

7-30

Data file tagging specifying a structure type configuration parameter with fix
action
<PositiveModelParameterConstraint id="A">
 <parameter>ReplacementTypes</parameter>
 <value>
 <double>a</double>
 <single>b</single>
 </value>
 <value>
 <double>c</double>
 <single>b</single>
 </value>
 <fixvalue>
 <double>a</double>
 <single>b</single>
 </fixvalue>
</PositiveModelParameterConstraint>

Data file tagging specifying configuration parameter with fix action and
prerequisite check

The following tagging specifies a subcheck for configuration parameter SolverType. The
subcheck for SolverType runs only after the ID_B subcheck passes. If theID_B
subcheck does not pass, the subcheck for SolverType does not run. The Model Advisor
reports that the prerequisite constraint is not met.

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the
SolverType subcheck passes. If the subcheck runs and does not pass, the check fix
action modifies the configuration parameter to Fixed-Step.

<PositiveModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
 <fixvalue>Fixed-step</value>
 <dependson>ID_B</value>
</PostitiveModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter

The following tagging specifies a subcheck for configuration parameter SolverType. The
subcheck does not pass if the configuration parameter is set to Fixed-Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>

 Create Check for Model Configuration Parameters

7-31

 <value>Fixed-step</value>
</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action

The following tagging specifies a subcheck for configuration parameter SolverType. If
the configuration parameter is set to Fixed-Step, the subcheck does not pass . If the
subcheck does not pass, the check fix action modifies the configuration parameter to
Variable-Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
 <fixvalue>Variable-step</value>
</NegativeModelParameterConstraint>

Data file tagging specifying unwanted configuration parameter with fix action
and prerequisite check

The following tagging specifies a check for configuration parameter SolverType. The
subcheck for SolverType runs only after the ID_B subcheck passes. If theID_B
subcheck does not pass, the subcheck for SolverType does not run. The Model Advisor
reports that the prerequisite constraint is not met.

If the SolverType subcheck runs and SolverType is set to Fixed-Step, the subcheck
does not pass. The check fix action modifies the configuration parameter to Variable-
Step.

<NegativeModelParameterConstraint id="ID_A">
 <parameter>SolverType</parameter>
 <value>Fixed-step</value>
 <fixvalue>Variable-step</value>
 <dependson>ID_B</value>
</NegativeModelParameterConstraint>

See Also
Advisor.authoring.CustomCheck.actionCallback |
Advisor.authoring.CustomCheck.checkCallback |
Advisor.authoring.DataFile.validate |
Advisor.authoring.generateConfigurationParameterDataFile

7 Create Model Advisor Checks

7-32

More About
• “Organize and Deploy Model Advisor Checks”

 See Also

7-33

Define Checks for Supported or Unsupported Blocks and
Parameters

For modeling guidelines, such as MAAB or MISRA, that require you to use a subset of
block or parameter values, you can create Model Advisor checks in which you specify
these constraints:

• Supported or unsupported block parameter values
• Supported or unsupported model parameter values
• Supported or unsupported blocks
• Check for whether blocks or parameters meet a combination of constraints

You can also create constraints that check for prerequisite constraints before checking
the actual constraint. You can check your model against these constraints as you edit or
run the checks interactively after you complete your model design.

Example
The sldemo_bounce model simulates a ball bouncing on Earth. In this example, you
create two Model Advisor checks consisting of constraints. Then, check your model
against those constraints.

7 Create Model Advisor Checks

7-34

Create Block Parameter Constraints
1 Create these block parameter constraints:

c1=Advisor.authoring.PositiveBlockParameterConstraint;
c1.ID='ID_1';
c1.BlockType='Gain';
c1.ParameterName='Gain';
c1.SupportedParameterValues={'-.7'};
c1.ValueOperator='eq';

c2=Advisor.authoring.NegativeBlockParameterConstraint;
c2.ID='ID_2';
c2.BlockType='InitialCondition';
c2.ParameterName='Value';
c2.UnsupportedParameterValues={'0'};
c2.ValueOperator='le';

Constraint c1 specifies that a Gain block must have a value equal to -.7. Constraint
c2 specifies that the Initial Condition block must have a value less than or equal to
zero.

 Define Checks for Supported or Unsupported Blocks and Parameters

7-35

2 Create this positive model parameter constraint.

c3=Advisor.authoring.PositiveModelParameterConstraint;
c3.ID='ID_3';
c3.ParameterName='SolverType';
c3.SupportedParameterValues={'Variable-step'};

Constraint c3 specifies that the Solver parameter must be equal to Variable-step.
3 Create this positive block type constraint:

c4=Advisor.authoring.PositiveBlockTypeConstraint;
c4.ID='ID_5';
s1=struct('BlockType','Constant','MaskType','');
s2=struct('BlockType','Subsystem','MaskType','');
s3=struct('BlockType','InitialCondition','MaskType','');
s4=struct('BlockType','Gain','MaskType','');
s5=struct('BlockType','Memory','MaskType','');
s6=struct('BlockType','SecondOrderIntegrator','MaskType','');
s7=struct('BlockType','Terminator','MaskType','');
c4.SupportedBlockTypes={s1;s2;s3;s4;s5;s6;s7;};
c4.addPreRequisiteConstraintID('ID_3');

Constraint c4 specifies the supported blocks. Constraint c3 is a prerequisite to c4
meaning that the Model Advisor only checks c4 if c3 passes.

4 Create a data file that contains these constraints. This data file corresponds to one
Model Advisor check.
Advisor.authoring.generateBlockConstraintsDataFile(...
 'sldemo_constraints_1.xml','constraints',{c1,c2,c3,c4});

The data file contains tagging specifically for constraints.
<?xml version="1.0" encoding="utf-8"?>
<customcheck>
 <checkdata>
 <PositiveBlockParameterConstraint BlockType="Gain" id="ID_1">
 <parameter type="string">Gain</parameter>
 <value>-.7</value>
 <operator>eq</operator>
 </PositiveBlockParameterConstraint>
 <NegativeBlockParameterConstraint BlockType="InitialCondition" id="ID_2">
 <parameter type="string">Value</parameter>
 <value>0</value>
 <operator>le</operator>
 </NegativeBlockParameterConstraint>
 <PositiveModelParameterConstraint id="ID_3">
 <parameter type="enum">SolverType</parameter>
 <value>Variable-step</value>
 </PositiveModelParameterConstraint>
 <PositiveBlockTypeConstraint id="ID_5">

7 Create Model Advisor Checks

7-36

 <BlockType MaskType="">Constant</BlockType>
 <BlockType MaskType="">Subsystem</BlockType>
 <BlockType MaskType="">InitialCondition</BlockType>
 <BlockType MaskType="">Gain</BlockType>
 <BlockType MaskType="">Memory</BlockType>
 <BlockType MaskType="">SecondOrderIntegrator</BlockType>
 <BlockType MaskType="">Terminator</BlockType>
 <dependson>ID_3</dependson>
 </PositiveBlockTypeConstraint>
 <CompositeConstraint>
 <ID>ID_1</ID>
 <ID>ID_2</ID>
 <ID>ID_5</ID>
 <operator>and</operator>
 </CompositeConstraint>
 </checkdata>
</customcheck>

Note For model configuration parameter constraints, use the
Advisor.authoring.generateBlockConstraintsDataFile method only when
specifying model configuration parameter constraints as prerequisites to block
constraints or as part of a composite constraint consisting of block and model
configuration parameter constraints. For other cases, use the
Advisor_authoring.generateConfigurationParameterDatafile method.

5 Create two block parameter constraints and a composite constraint.

cc1=Advisor.authoring.PositiveBlockParameterConstraint;
cc1.ID='ID_cc1';
cc1.BlockType='SecondOrderIntegrator';
cc1.ParameterName='UpperLimitX';
cc1.SupportedParameterValues={'inf'};
cc1.ValueOperator='eq';

cc2=Advisor.authoring.PositiveBlockParameterConstraint;
cc2.ID='ID_cc2';
cc2.BlockType='SecondOrderIntegrator';
cc2.ParameterName='LowerLimitX';
cc2.SupportedParameterValues={'0.0'};
cc2.ValueOperator='eq';

cc=Advisor.authoring.CompositeConstraint;
cc.addConstraintID('ID_cc1');
cc.addConstraintID('ID_cc2');
cc.CompositeOperator='and';

Constraint cc1 specifies that for a Second-Order Integrator block, the Upper limit x
parameter must have a value equal to inf. Constraint cc2 specifies that for a

 Define Checks for Supported or Unsupported Blocks and Parameters

7-37

Second-Order Integrator block, the Lower limit x parameter must have a value
equal to zero. Constraint cc specifies that for this check to pass, both cc1 and cc2
have to pass.

6 Create a data file that contains these constraints. This data file corresponds to a
second Model Advisor check.

Advisor.authoring.generateBlockConstraintsDataFile(...
 'sldemo_constraints_2.xml','constraints',{cc1,cc2,cc});

Create Model Advisor Checks from Constraints
1 To specify and register these checks, use this sl_customization.m file.

function sl_customization(cm)

% register custom checks.
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register items to factory group.
cm.addModelAdvisorTaskFcn(@defineModelAdvisorGroups);

% defineModelAdvisorChecks
function defineModelAdvisorChecks

% check1
rec = Advisor.authoring.createBlockConstraintCheck('mathworks.check_0001');
rec.Title = 'Example1: Check block parameter constraints';
rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback...
 (system)), 'None', 'StyleOne');
rec.TitleTips = 'Example check block parameter constraints';

% --- data file input parameters
rec.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Data File';
inputParam1.Value = 'sldemo_constraints_1.xml';
inputParam1.Type = 'String';
inputParam1.Description = 'Name or full path of XML data file.';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec.setInputParameters({inputParam1});
rec.SupportExclusion = false;
rec.SupportLibrary = true;

% check2
rec1 = Advisor.authoring.createBlockConstraintCheck('mathworks.check_0002');
rec1.Title = 'Example2: Check block parameter constraints';
rec1.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback...
 (system)), 'None', 'StyleOne');
rec1.TitleTips = 'Example check block parameter constraints';

% --- data file input parameters
rec1.setInputParametersLayoutGrid([1 1]);
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Data File';

7 Create Model Advisor Checks

7-38

inputParam1.Value = 'sldemo_constraints_2.xml';
inputParam1.Type = 'String';
inputParam1.Description = 'Name or full path of XML data file.';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
rec1.setInputParameters({inputParam1});
rec1.SupportExclusion = false;
rec1.SupportLibrary = true;
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);
mdladvRoot.register(rec1);

%% defineModelAdvisorGroups
function defineModelAdvisorGroups
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group 1
rec = ModelAdvisor.FactoryGroup('com.mathworks.Test.factoryGroup');
rec.DisplayName='Example: My Group';
rec.addCheck('mathworks.check_0001');
rec.addCheck('mathworks.check_0002');

mdladvRoot.publish(rec);

You must use the Advisor.authoring.createBlockConstraintCheck function
to create the ModelAdvisor.Check object and specify the constraint data file as an
input parameter to this object.

2 At the command prompt, type create the Example1: Check block parameter
constraints and Example2: Check block parameter constraints checks by typing
this command:

Advisor.Manager.refresh_customizations
3 At the command prompt, type sldemo_bounce.
4 To open the Model Advisor, from the model window, select Analysis > Model

Advisor > Model Advisor
5 In the left pane, select By Task > Example: My Group. For each check, in the right

pane, the Data File parameters are set to the data files that you previously created.
6 Click Run Selected Checks.
7 The Example1: Check block parameter constraints check produces a warning

because the Gain block has a value of -0.8 not -0.7. The Example2: Check block
parameter constraints check passes because the Second-Order Integrator block
meets both constraints.

You can use edit-time checking with these checks. For more information, see “Check for
Compliance Using the Model Advisor and Edit-Time Checking” on page 3-2.

 Define Checks for Supported or Unsupported Blocks and Parameters

7-39

See Also
Advisor.authoring.generateBlockConstraintsDataFile |
NegativeBlockParameterConstraint | NegativeBlockTypeConstraint |
NegativeModelParameterConstraint | PositiveBlockParameterConstraint |
PositiveBlockTypeConstraint | PositiveModelParameterConstraint

7 Create Model Advisor Checks

7-40

Register Checks

Create sl_customization Function
To add checks to the Model Advisor, on your MATLAB path, in the sl_customization.m
file, create the sl_customization() function.

Tip

• You can have more than one sl_customization.m file on your MATLAB path.
• Do not place an sl_customization.m file that customizes checks and folders in the

Model Advisor in your root MATLAB folder or its subfolders, except for the
matlabroot/work folder. Otherwise, the Model Advisor ignores the customizations
that the file specifies.

The sl_customization function accepts one argument, a customization manager
object, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom checks. Use
these methods to register customizations specific to your application, as described in the
following sections.

Register Checks
To register custom checks, the customization manager includes the following method:

• addModelAdvisorCheckFcn (@checkDefinitionFcn)

Registers the checks that you define in checkDefinitionFcn to the By Product
folder of the Model Advisor.

The checkDefinitionFcn argument is a handle to the function that defines custom
checks that you want to add to the Model Advisor as instances of the
ModelAdvisor.Check class.

This example shows how to register custom checks:

 Register Checks

7-41

function sl_customization(cm)

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

Note If you add custom tasks and folders within the sl_customization.m file, include
methods for registering the tasks and folders in the sl_customization function.

See Also
ModelAdvisor.Check

Related Examples
• Registering Tasks and Folders on page 8-12

More About
• “Define Custom Checks” on page 7-46

7 Create Model Advisor Checks

7-42

Define Startup and Post-Execution Actions Using
Process Callback Functions

The process callback function is an optional function that you use to configure the Model
Advisor and process check results at run time. The process callback function specifies
actions that the software performs at different stages of Model Advisor execution:

• configure stage: The Model Advisor executes configure actions at startup, after
checks and tasks have been initialized. At this stage, you can customize how the Model
Advisor constructs lists of checks and tasks by modifying Visible, Enable, and
Value properties. For example, you can remove, rename, and selectively display
checks and tasks in the By Task folder.

• process_results stage: The Model Advisor executes process_results actions
after checks complete execution. You can specify actions to examine and report on the
results returned by check callback functions.

Process Callback Function Arguments
The process callback function uses the following arguments.

Argument I/O Type Data Type Description
stage Input Enumeration Specifies the stages at which

process callback actions are
executed. Use this argument in
a switch statement to specify
actions for the stages
configure and
process_results.

system Input Path Model or subsystem that the
Model Advisor analyzes.

checkCellArray Input/Output Cell array As input, the array of checks
constructed in the check
definition function.

As output, the array of checks
modified by actions in the
configure stage.

 Define Startup and Post-Execution Actions Using Process Callback Functions

7-43

Argument I/O Type Data Type Description
taskCellArray Input/Output Cell array As input, the array of tasks

constructed in the task
definition function.

As output, the array of tasks
modified by actions in the
configure stage.

Process Callback Function
This example shows a process callback function that specifies actions in the configure
stage that makes only custom checks visible. In the process_results stage, this
function displays information at the command prompt for checks that do not pass.
% Process Callback Function
% Defines actions to execute at startup and post-execution
function [checkCellArray taskCellArray] = ...
 ModelAdvisorProcessFunction(stage, system, checkCellArray, taskCellArray)
switch stage
 % Specify the appearance of the Model Advisor window at startup
 case 'configure'
 for i=1:length(checkCellArray)
 % Hide all checks that do not belong to custom folder
 if isempty(strfind(checkCellArray{i}.ID, 'mathworks.example'))
 checkCellArray{i}.Visible = false;
 checkCellArray{i}.Value = false;
 end
 end
 % Specify actions to perform after the Model Advisor completes execution
 case 'process_results'
 for i=1:length(checkCellArray)
 % Print message if check does not pass
 if checkCellArray{i}.Selected && (strcmp(checkCellArray{i}.Title, ...
 'Check Simulink window screen color'))
 mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
 % Verify whether the check was run and if it failed
 if mdladvObj.verifyCheckRan(checkCellArray{i}.ID)
 if ~mdladvObj.getCheckResultStatus(checkCellArray{i}.ID)
 % Display text in MATLAB Command Window
 disp(['Example message from Model Advisor Process'...
 ' callback.']);
 end
 end
 end
 end
end

7 Create Model Advisor Checks

7-44

Tips for Using the Process Callback Function in a
sl_customization File
Observe the following tips when using process callback function in a sl_customization
file:

• If you delete a check in the Model Advisor Configuration Editor, you can retrieve a
copy of it from the Model Advisor Check Browser. However, if you use a process
callback function in a sl_customization file to hide checks and folders, the Model
Advisor Configuration Editor and Model Advisor Check Browser do not display the
hidden checks and folders. For a complete list of checks and folders, remove process
callback functions and update the Simulink environment.

• The Model Advisor registers only one process callback function. If you have more than
one sl_customization.m file on your MATLAB path, the Model Advisor registers
the process callback function from the sl_customization.m file that has the highest
priority.

• If you add process callbacks within the sl_customization.m file, include methods
for registering the process callbacks in the sl_customization function.

See Also
“Create Model Advisor Checks Workflow” on page 7-2 | “Register Checks” on page 7-41 |
“Organize Customization File Checks and Folders” on page 8-11 | “Organize Checks and
Folders Using the Model Advisor Configuration Editor” on page 8-5

 See Also

7-45

Define Custom Checks

About Custom Checks
You can create a custom check to use in the Model Advisor. Creating custom checks
provides you with the ability to specify which conditions and configuration settings the
Model Advisor reviews.

You define custom checks in one or more functions that specify the properties of each
instance of the ModelAdvisor.Check class. Define one instance of this class for each
custom check that you want to add to the Model Advisor, and register the custom check.

Tip You can add a check to multiple folders by creating a task.

Contents of Check Definitions
When you define a Model Advisor check, it contains the information listed in the following
table.

Contents Description
Check ID (required) Uniquely identifies the check. The Model Advisor uses

this id to access the check.
Handle to check callback
function (required)

Function that specifies the contents of a check.

Check name (recommended) Creates a name for the check that the Model Advisor
displays.

Check properties (optional) Creates a user interface with the check. When adding
checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for
Visible and LicenseName.

Input Parameters (optional) Adds input parameters that request input from the user.
The Model Advisor uses the input to perform the check.

Action (optional) Adds fixing action.
Explore Result button
(optional)

Adds the Explore Result button that the user clicks to
open the Model Advisor Result Explorer.

7 Create Model Advisor Checks

7-46

Display and Enable Checks
You can create a check and specify how it appears in the Model Advisor. You can define
when to display a check, or whether a user can select or clear a check using the
Visible, Enable, and Value properties of the ModelAdvisor.Check class.

Note When adding checks to the Model Advisor as tasks, specify these properties in the
ModelAdvisor.Task class. If you specify the properties in both ModelAdvisor.Check
and ModelAdvisor.Task, the ModelAdvisor.Task properties take precedence, except
for the Visible and LicenseName properties.

The following chart illustrates how the Visible, Enable, and Value properties interact.

 Define Custom Checks

7-47

Visible?

Do not
display
check
or task

Ignore
Enable

 and Value
properties

false

true

Enabled?
false

true

Display
check
or task

with active
check box

Display
check box
at current
Value, but
grayed out

Display
check
or task

Define Where Custom Checks Appear
Specify where the Model Advisor places custom checks using the following guidelines:

• To place a check in a new folder in the Model Advisor root, use the
ModelAdvisor.Group class.

• To place a check in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

• To place a check in the By Product folder, use the ModelAdvisor.Root.publish
method. If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

7 Create Model Advisor Checks

7-48

Check Definition Function
This example shows a function that defines the custom checks associated with the
callback functions described in “Create Callback Functions and Results” on page 7-54.
The check definition function returns a cell array of custom checks to be added to the
Model Advisor.

The check definitions in the example use the tasks described in Defining Custom Groups
on page 8-13.
% Defines custom Model Advisor checks
function defineModelAdvisorChecks

% Sample Check 0: Check whose Results are Viewed as Detailed Result Collections
rec = ModelAdvisor.Check('com.mathworks.sample.Check0');
rec.Title = 'Check whether block names appear below blocks (recommended check style)';
rec.TitleTips = 'Example new style callback (recommended check style)';
rec.setCallbackFcn(@SampleNewCheckStyleCallback,'None','DetailStyle');
% set fix operation
myAction0 = ModelAdvisor.Action;
myAction0.setCallbackFcn(@sampleActionCB0);
myAction0.Name='Make block names appear below blocks';
myAction0.Description='Click the button to place block names below blocks';
rec.setAction(myAction0);
mdladvRoot.register(rec);

% Sample check 1: Informational check
rec = ModelAdvisor.Check('mathworks.example.configManagement');
rec.Title = 'Informational check for model configuration management';
setCallbackFcn(rec, @modelVersionChecksumCallbackUsingFT,'None','StyleOne');
rec.CallbackContext = 'PostCompile';
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);

% Sample check 2: Basic Check with Pass/Fail Status
rec = ModelAdvisor.Check('mathworks.example.unconnectedObjects');
rec.Title = 'Check for unconnected objects';
setCallbackFcn(rec, @unconnectedObjectsCallbackUsingFT,'None','StyleOne');
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);

% Sample Check 3: Check with Subchecks and Actions
rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');
rec.Title = 'Check safety-related optimization settings';
setCallbackFcn(rec, @OptmizationSettingCallback,'None','StyleOne');
% Define an automatic fix action for this check
modifyAction = ModelAdvisor.Action;
setCallbackFcn(modifyAction, @modifyOptmizationSetting);
modifyAction.Name = 'Modify Settings';
modifyAction.Description = ['Modify model configuration optimization' ...
 ' settings that can impact safety.'];
modifyAction.Enable = true;
setAction(rec, modifyAction);

 Define Custom Checks

7-49

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(rec);

Define Check Input Parameters
With input parameters, you can request input before running the check. Define input
parameters using the ModelAdvisor.InputParameter class inside a custom check
function. You must define one instance of this class for each input parameter that you
want to add to a Model Advisor check.

Specify the layout of input parameters with the following methods.

Method Description
ModelAdvisor.Check.‐
setInputParametersLayoutGrid

Specifies the size of the input parameter
grid.

ModelAdvisor.InputParameter.‐
setRowSpan

Specifies the number of rows the parameter
occupies in the Input Parameter layout grid.

ModelAdvisor.InputParameter.‐
setColSpan

Specifies the number of columns the
parameter occupies in the Input Parameter
layout grid.

This example shows how to define input parameters that you add to a custom check. You
must include input parameter definitions inside a custom check definition. The following
code, when included in a custom check definition, creates three input parameters.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.setInputParametersLayoutGrid([3 2]);
% define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;
inputParam1.Description = 'sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);

7 Create Model Advisor Checks

7-50

inputParam2.setColSpan([1 1]);
inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};
inputParam3.setRowSpan([2 2]);
inputParam3.setColSpan([2 2]);
rec.setInputParameters({inputParam1,inputParam2,inputParam3});

The Model Advisor displays these input parameters in the right pane, in an Input
Parameters box.

Define Model Advisor Result Explorer Views
A list view provides a way for users to fix check warnings and failures using the Model
Advisor Result Explorer. Creating a list view allows you to:

• Add the Explore Result button to the custom check in the Model Advisor window.
• Provide the information to populate the Model Advisor Result Explorer.

This example shows how to define list views. You must make the Explore Result button
visible using the ModelAdvisor.Check.ListViewVisible property inside a custom

 Define Custom Checks

7-51

check function, and include list view definitions inside a check callback function. You
must define one instance of this class for each list view that you want to add to a Model
Advisor Result Explorer window.

The following code, when included in a check definition function, adds the Explore
Result button to the check in the Model Advisor.
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
% add 'Explore Result' button
rec.ListViewVisible = true;

The following code, when included in a check callback function, provides the information
to populate the Model Advisor Result Explorer.
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
mdladvObj.setCheckResultStatus(true);

% define list view parameters
myLVParam = ModelAdvisor.ListViewParameter;
myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter
myLVParam.Data = get_param(searchResult,'object')';
myLVParam.Attributes = {'FontName'}; % name is default property
mdladvObj.setListViewParameters({myLVParam});

Define Check Actions
An action provides a way for you to specify an action that the Model Advisor performs to
fix a Model Advisor check. When you define an action, the Model Advisor window includes
an Action box below the Analysis box.

You define actions using the ModelAdvisor.Action class inside a custom check
function. You must define:

• One instance of this class for each action that you want to take.
• One action callback function for each action.

This example shows the information you need to populate the Action box in the Model
Advisor. Include this in the check definition function.
rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');
% Define an automatic fix action for this check
modifyAction = ModelAdvisor.Action;
modifyAction.setCallbackFcn(@modifyOptmizationSetting);
modifyAction.Name = 'Modify Settings';
modifyAction.Description = ['Modify model configuration optimization' ...
 ' settings that can impact safety'];
modifyAction.Enable = true;
rec.setAction(modifyAction);

7 Create Model Advisor Checks

7-52

The Model Advisor, in the right pane, displays an Action box.

See Also
ModelAdvisor.Action | ModelAdvisor.Check | ModelAdvisor.FactoryGroup |
ModelAdvisor.Group | ModelAdvisor.InputParameter |
ModelAdvisor.Root.publish | ModelAdvisor.Task

Related Examples
• “Organize Customization File Checks and Folders” on page 8-11

More About
• “Batch-Fix Warnings or Failures” (Simulink)
• “Create Callback Functions and Results” on page 7-54
• Defining Custom Groups on page 8-13
• “Register Checks” on page 7-41

 See Also

7-53

Create Callback Functions and Results

About Callback Functions
A callback function specifies the actions that the Model Advisor performs on a model or
subsystem, based on the check or action that the user runs. You must create a callback
function for each custom check and action so that the Model Advisor can execute the
function when you run the check. All types of callback functions provide one or more
return arguments for displaying the results after executing the check or action. In some
cases, return arguments are character vectors or cell arrays of character vectors that
support embedded HTML tags for text formatting.

Action More Information
Create an informational callback function
for a custom check that finds and displays
the model configuration and checksum
information.

“Informational Check Callback Function”
on page 7-55

Create a simple callback function that
indicates if the model passed a check, or to
recommend fixing the issue.

“Simple Check Callback Function” on page
7-56

Create detailed check callback function to
return and organize results as strings in a
layered, hierarchical fashion.

“Detailed Check Callback Function” on
page 7-57

Create a callback function that
automatically displays hyperlinks for every
object returned by the check.

“Check Callback Function with Hyperlinked
Results” on page 7-58

Create a callback function that collects
results into a group, such as blocks in a
subsystem that violate a check. These
results are presented on the Model Advisor
user interface by using report styles that
are viewed by recommended action,
subsystem, or block.

“Check Callback Function for Detailed
Result Collections” on page 7-61

7 Create Model Advisor Checks

7-54

Action More Information
Create an action callback function that
specifies the actions that the Model Advisor
performs on a model or subsystem when
you click the action button.

“Action Callback Function” on page 7-63

Create a callback function for a custom
check with two subchecks.

“Check With Subchecks and Actions” on
page 7-64

Create a callback function for a custom
basic check with pass/fail status.

“Basic Check with Pass/Fail Status” on page
7-66

Informational Check Callback Function
This example shows how to create a callback function for a custom informational check
that finds and displays the model configuration and checksum information. The
informational check uses the Result Template API to format the check result.

An informational check includes the following items in the results:

• A description of what the check is reviewing.
• References to standards, if applicable.

An informational check does not include the following items in the results:

• The check status. The Model Advisor displays the overall check status, but the status
is not in the result.

• A description of the status.
• The recommended action to take when the check does not pass.
• Subcheck results.
• A line below the results.

% Sample Check 1 Callback Function: Informational Check
% Find and display model configuration and checksum information
% Informational checks do not have a passed or warning status in the results

function resultDescription = modelVersionChecksumCallbackUsingFT(system)
resultDescription = [];
system = getfullname(system);
model = bdroot(system);

% Format results in a list using Model Advisor Result Template API
ft = ModelAdvisor.FormatTemplate('ListTemplate');

 Create Callback Functions and Results

7-55

% Add See Also section for references to standards
docLinkSfunction{1} = {['IEC 61508-3, Table A.8 (5)' ...
 ' ''Software configuration management'' ']};
setRefLink(ft,docLinkSfunction);

% Description of check in results
desc = 'Display model configuration and checksum information.';
% If running the Model Advisor on a subsystem, add note to description
if strcmp(system, model) == false
 desc = strcat(desc, ['
NOTE: The Model Advisor is reviewing a' ...
 ' sub-system, but these results are based on root-level settings.']);
end
setCheckText(ft, desc);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
% If err, use these values
mdlver = 'Error - could not retrieve Version';
mdlauthor = 'Error - could not retrieve Author';
mdldate = 'Error - could not retrieve Date';
mdlsum = 'Error - could not retrieve CheckSum';

% Get model configuration and checksum information
try
 mdlver = get_param(model,'ModelVersion');
 mdlauthor = get_param(model,'LastModifiedBy');
 mdldate = get_param(model,'LastModifiedDate');
 mdlsum = Simulink.BlockDiagram.getChecksum(model);
 mdlsum = [num2str(mdlsum(1)) ' ' num2str(mdlsum(2)) ' ' ...
 num2str(mdlsum(3)) ' ' num2str(mdlsum(4))];
 mdladvObj.setCheckResultStatus(true); % init to true
catch err
 mdladvObj.setCheckResultStatus(false);
 setSubResultStatusText(ft,err.message);
 resultDescription{end+1} = ft;
 return
end

% Display the results
lbStr ='
';
resultStr = ['Model Version: ' mdlver lbStr 'Author: ' mdlauthor lbStr ...
 'Date: ' mdldate lbStr 'Model Checksum: ' mdlsum];
setSubResultStatusText(ft,resultStr);

% Informational checks do not have subresults, suppress line
setSubBar(ft,false);
resultDescription{end+1} = ft;

Simple Check Callback Function
This example shows how to create a simple check callback function. Use a simple check
callback function with results formatted using the Result Template API to indicate
whether the model passed or failed the check, or to recommend fixing an issue. The

7 Create Model Advisor Checks

7-56

keyword for this callback function is StyleOne. The check definition requires this
keyword.

The check callback function takes the following arguments.

Argument I/O Type Description
system Input Path to the model or subsystem analyzed by the Model

Advisor.
result Output MATLAB character vector that supports Model Advisor

Formatting API on page 7-73 calls or embedded HTML
tags for text formatting.

Detailed Check Callback Function
This example shows how to create a detailed check callback function. Use the detailed
check callback function to return and organize results as strings in a layered, hierarchical
fashion. The function provides two output arguments so you can associate text
descriptions with one or more paragraphs of detailed information. The keyword for the
detailed callback function is StyleTwo. The check definition requires this keyword.

The detailed callback function takes the following arguments.

Argument I/O Type Description
system Input Path to the model or system analyzed by

the Model Advisor.
ResultDescription Output Cell array of MATLAB character vectors

that supports Model Advisor Formatting
API on page 7-73 calls or embedded
HTML tags for text formatting. The Model
Advisor concatenates the
ResultDescription character vector
with the corresponding array of
ResultDetails character vectors.

ResultDetails Output Cell array of cell arrays, each of which
contains one or more character vectors.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

 Create Callback Functions and Results

7-57

This example shows a detailed check callback function that checks optimization settings
for simulation and code generation.
% -----------------------------
% Sample StyleTwo callback function, used for check "Check model optimization settings"
% Please refer to Model Advisor API document for more details.
% -----------------------------
function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)
ResultDescription ={};
ResultDetails ={};

model = bdroot(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
mdladvObj.setCheckResultStatus(true); % init result status to pass

% Check Simulation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...
 'optimization settings:']);
if strcmp(get_param(model,'BlockReduction'),'off');
 ResultDetails{end+1} = {ModelAdvisor.Text(['It is recommended to '...
 'turn on Block reduction optimization option.',{'italic'}])};
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
else
 ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};
end

% Check code generation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check code generation '...
 'optimization settings:']);
ResultDetails{end+1} = {};
if strcmp(get_param(model,'LocalBlockOutputs'),'off');
 ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...
 ' turn on Enable local block outputs option.',{'italic'}]);
 ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
end
if strcmp(get_param(model,'BufferReuse'),'off');
 ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...
 ' turn on Reuse block outputs option.',{'italic'}]);
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
end
if isempty(ResultDetails{end})
 ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});
end

Check Callback Function with Hyperlinked Results
This example shows how to create a callback function with hyperlinked results. This
callback function automatically displays hyperlinks for every object returned by the check

7 Create Model Advisor Checks

7-58

so that you can easily locate problem areas in your model or subsystem. The keyword for
this type of callback function is StyleThree. The check definition requires this keyword.

This callback function takes the following arguments.

Argument I/O Type Description
system Input Path to the model or system analyzed by

the Model Advisor.
ResultDescription Output Cell array of MATLAB character vectors

that supports the Model Advisor
Formatting API calls or embedded HTML
tags for text formatting.

ResultDetails Output Cell array of cell arrays, each of which
contains one or more Simulink objects
such as blocks, ports, lines, and Stateflow
charts. The objects must be in the form of
a handle or Simulink path.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

The Model Advisor automatically concatenates each character vector from
ResultDescription with the corresponding array of objects from ResultDetails.
The Model Advisor displays the contents of ResultDetails as a set of hyperlinks, one
for each object returned in the cell arrays. When you click a hyperlink, the Model Advisor
displays the target object highlighted in your Simulink model.

This example shows a check callback function with hyperlinked results. This example
checks a model for consistent use of font type and font size in its blocks. It also contains
input parameters, actions, and a call to the Model Advisor Result Explorer, which are
described in later sections.

% Sample StyleThree callback function, used for check "Check Simulink block font".
% Please refer to Model Advisor API document for more details.
% -----------------------------
function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)
ResultDescription ={};
ResultDetails ={};

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

 Create Callback Functions and Results

7-59

mdladvObj.setCheckResultStatus(true);
needEnableAction = false;
% get input parameters
inputParams = mdladvObj.getInputParameters;
skipFontCheck = inputParams{1}.Value;
regularFontSize = inputParams{2}.Value;
regularFontName = inputParams{3}.Value;
if skipFontCheck
 ResultDescription{end+1} = ModelAdvisor.Paragraph('Skipped.');
 ResultDetails{end+1} = {};
 return
end
regularFontSize = str2double(regularFontSize);
if regularFontSize<1 || regularFontSize>=99
 mdladvObj.setCheckResultStatus(false);
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['Invalid font size. '...
 'Please enter a value between 1 and 99']);
 ResultDetails{end+1} = {};
end

% find all blocks inside current system
allBlks = find_system(system);

% block diagram doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...
 'use same font for blocks to ensure uniform appearance of model. '...
 'The following blocks use a font other than ' regularFontName ': ']);
 ResultDetails{end+1} = searchResult;
 mdladvObj.setCheckResultStatus(false);
 myLVParam = ModelAdvisor.ListViewParameter;
 myLVParam.Name = 'Invalid font blocks'; % pull down filter name
 myLVParam.Data = get_param(searchResult,'object')';
 myLVParam.Attributes = {'FontName'}; % name is default property
 mdladvObj.setListViewParameters({myLVParam});
 needEnableAction = true;
else
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font names '...
 'are identical.']);
 ResultDetails{end+1} = {};
end

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',regularFontSize);
% look for different font size blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)

7 Create Model Advisor Checks

7-60

 ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...
 'use same font size for blocks to ensure uniform appearance of model. '...
 'The following blocks use a font size other than ' num2str(regularFontSize) ': ']);
 ResultDetails{end+1} = searchResult;
 mdladvObj.setCheckResultStatus(false);
 myLVParam = ModelAdvisor.ListViewParameter;
 myLVParam.Name = 'Invalid font size blocks'; % pull down filter name
 myLVParam.Data = get_param(searchResult,'object')';
 myLVParam.Attributes = {'FontSize'}; % name is default property
 mdladvObj.setListViewParameters...
 ({mdladvObj.getListViewParameters{:}, myLVParam});
 needEnableAction = true;
else
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font sizes '...
 'are identical.']);
 ResultDetails{end+1} = {};
end

mdladvObj.setActionEnable(needEnableAction);
mdladvObj.setCheckErrorSeverity(1);

In the Model Advisor, if you run Example task with input parameter and auto-fix
ability for the slvnvdemo_mdladv model, you can view the hyperlinked results. Clicking
the first hyperlink, slvnvdemo_mdladv/Input, displays the Simulink model with the
Input block highlighted.

Check Callback Function for Detailed Result Collections
This example shows a check callback function that creates result detail objects that are
collected into a group, such as blocks in a subsystem that violate a check. When a check
is not violated, the result details contain the check description and result status. When a
check is violated, the result details contain the check description, result status, and the
recommended action to fix the issue.

The keyword for this callback function is DetailStyle. The check definition requires
this keyword. See “Check Definition Function” on page 7-49.

The callback function takes the arguments listed in the table.

Argument I/O Type Description
system Input Path to the model or system analyzed by

the Model Advisor.
CheckObj Input ModelAdvisor.Check object for the

check.

 Create Callback Functions and Results

7-61

In this example, the callback function reviews the model and identifies blocks whose
name is not located below the block. It uses name and value pairs to gather the results
into collections.
% -----------------------------
% Sample new check style callback function, used for check "Check whether block names appear below blocks".
% Please refer to Model Advisor API document for more details.
% -----------------------------
function SampleNewCheckStyleCallback(system, CheckObj)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

% find all blocks whose name does not appear below blocks
violationBlks = find_system(system, 'Type','block',...
 'NamePlacement','alternate',...
 'ShowName', 'on');
if isempty(violationBlks)
 ElementResults = ModelAdvisor.ResultDetail;
 ElementResults.IsInformer = true;
 ElementResults.Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults.Status = 'All blocks have names displayed below the block.';
 mdladvObj.setCheckResultStatus(true);
else
 ElementResults(1,numel(violationBlks))=ModelAdvisor.ResultDetail;
 for i=1:numel(ElementResults)
 ElementResults(i).setData(violationBlks{i});
 ElementResults(i).Description = 'Identify blocks where the name is not displayed below the block.';
 ElementResults(i).Status = 'The following blocks have names that do not display below the blocks:';
 ElementResults(i).RecAction = 'Change the location such that the block name is below the block.';
 end
 mdladvObj.setCheckResultStatus(false);
 mdladvObj.setActionEnable(true);
end

CheckObj.setResultDetails(ElementResults);

In the Model Advisor, if you run Check whether block names appear below blocks
(recommended check style) for the slvnvdemo_mdladv model, you can view the
results by selecting:

• View By > Recommended Action ─ When a check is violated, this view shows a list
of model elements that violate the check. When there is no violation, this view
provides a brief description stating that the check was not violated.

• View By > Subsystem ─ This view shows a table of model elements that violate the
check, organized by model or subsystem (when applicable)

• View By > Block ─ This view provides a list of check violations for each block

When there are check violations, click the hyperlink to easily review the issues in your
model or subsystem. To create a check using this callback function, see “Create
Customized Pass/Fail Check with Detailed Result Collections” on page 7-14.

7 Create Model Advisor Checks

7-62

Action Callback Function
This example shows how to create an action callback function. An action callback function
specifies the actions that the Model Advisor performs on a model or subsystem when the
user clicks the action button. You must create one callback function for the action that
you want to take.

The action callback function takes the following arguments.

Argument I/O Type Description
taskobj Input The ModelAdvisor.Task object for the check that

includes an action definition.
result Output MATLAB character vector that supports Model Advisor

Formatting API on page 7-73 calls or embedded HTML
tags for text formatting.

This example shows an action callback function that fixes the optimization settings that
the Model Advisor reviews as defined in “Check With Subchecks and Actions” on page 7-
64.
% Sample Check 3 Action Callback Function: Check with Subresults and Actions
% Fix optimization settings
function result = modifyOptmizationSetting(taskobj)
% Initialize variables
result = ModelAdvisor.Paragraph();
mdladvObj = taskobj.MAObj;
system = bdroot(mdladvObj.System);

% 'Block reduction' is selected
% Clear the check box and display text describing the change
if ~strcmp(get_param(system,'BlockReduction'),'off')
 set_param(system,'BlockReduction','off');
 result.addItem(ModelAdvisor.Text(...
 'Cleared the ''Block reduction'' check box.',{'Pass'}));
 result.addItem(ModelAdvisor.LineBreak);
end
% 'Conditional input branch execution' is selected
% Clear the check box and display text describing the change
if ~strcmp(get_param(system,'ConditionallyExecuteInputs'),'off')
 set_param(system,'ConditionallyExecuteInputs','off');
 result.addItem(ModelAdvisor.Text(...
 'Cleared the ''Conditional input branch execution'' check box.', ...
 {'Pass'}));
end

 Create Callback Functions and Results

7-63

Action Callback Function for Detailed Result Collections

This example shows the action callback function for check results that are collected into a
group, such as blocks in a subsystem that violate a check. From the Model Advisor, you
can use this functionality to fix issues flagged by the check.
% -----------------------------
% Sample Check 0 Action Callback Function: Check whose Results are Viewed as Detailed Result Collections
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = sampleActionCB0(taskobj)
mdladvObj = taskobj.MAObj;
checkObj = taskobj.Check;
resultDetailObjs = checkObj.ResultDetails;
for i=1:numel(resultDetailObjs)
 % take some action for each of them
 block=Simulink.ID.getHandle(resultDetailObjs(i).Data);
 set_param(block,'NamePlacement','normal');
end

result = ModelAdvisor.Text('Changed the location such that the block name is below the block.');
mdladvObj.setActionEnable(false);

In the Model Advisor, open the slvnvdemo_mdladv model. Right-click on a block and
select Rotate & Flip > Flip Block Name. When you run Check whether block names
appear below blocks (recommended check style), the check fails.

You can fix the failed blocks by using one of these methods:

• Update each violation individually by double-clicking on the hyperlink to open the
block. Right-click on the block and select Rotate & Flip > Flip Block Name.

• Select the Make block names appear below blocks button. The Model Advisor
automatically fixes the issues in the model. Notice the button is now greyed out.

To create a check using this action callback function, see “Create Customized Pass/Fail
Check with Detailed Result Collections” on page 7-14.

Check With Subchecks and Actions
This example shows how to create a callback function for a custom check that finds and
reports optimization settings. The check consists of two subchecks. The first reviews the
Block reduction optimization setting, and the second reviews the Conditional input
branch execution optimization setting.

A check with subchecks includes the following items in the results:

7 Create Model Advisor Checks

7-64

• A description of what the overall check is reviewing.
• A title for the subcheck.
• A description of what the subcheck is reviewing.
• References to standards, if applicable.
• The status of the subcheck.
• A description of the status.
• Results for the subcheck.
• Recommended actions to take when the subcheck does not pass.
• A line between the subcheck results.
% Sample Check 3 Callback Function: Check with Subchecks and Actions
% Find and report optimization settings
function ResultDescription = OptmizationSettingCallback(system)
% Initialize variables
system =getfullname(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
mdladvObj.setCheckResultStatus(false); % Default check status is 'Warning'
ResultDescription = {};
system = bdroot(system);

% Format results in a list using Model Advisor Result Template API
% Create a list template object for first subcheck
ft1 = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results
setCheckText(ft1,['Check model configuration for optimization settings that'...
 'can impact safety.']);

% Title and description of first subcheck
setSubTitle(ft1,'Verify Block reduction setting');
setInformation(ft1,'Check whether the ''Block reduction'' check box is cleared.');
% Add See Also section with references to applicable standards
docLinks{1} = {['Reference DO-178B Section 6.3.4e - Source code ' ...
 'is traceable to low-level requirements']};
% Review 'Block reduction' optimization
setRefLink(ft1,docLinks);
if strcmp(get_param(system,'BlockReduction'),'off')
 % 'Block reduction' is cleared
 % Set subresult status to 'Pass' and display text describing the status
 setSubResultStatus(ft1,'Pass');
 setSubResultStatusText(ft1,'The ''Block reduction'' check box is cleared.');
 ResultStatus = true;
else
 % 'Block reduction' is selected
 % Set subresult status to 'Warning' and display text describing the status
 setSubResultStatus(ft1,'Warn');
 setSubResultStatusText(ft1,'The ''Block reduction'' check box is selected.');
 setRecAction(ft1,['Clear the ''Optimization > Block reduction''' ...
 ' check box in the Configuration Parameters dialog box.']);

 Create Callback Functions and Results

7-65

 ResultStatus = false;
end

ResultDescription{end+1} = ft1;

% Title and description of second subcheck
ft2 = ModelAdvisor.FormatTemplate('ListTemplate');
setSubTitle(ft2,'Verify Conditional input branch execution setting');
setInformation(ft2,['Check whether the ''Conditional input branch execution'''...
 ' check box is cleared.'])
% Add See Also section and references to applicable standards
docLinks{1} = {['Reference DO-178B Section 6.4.4.2 - Test coverage ' ...
 'of software structure is achieved']};
setRefLink(ft2,docLinks);

% Last subcheck, suppress line
setSubBar(ft2,false);

% Check status of the 'Conditional input branch execution' check box
if strcmp(get_param(system,'ConditionallyExecuteInputs'),'off')
 % The 'Conditional input branch execution' check box is cleared
 % Set subresult status to 'Pass' and display text describing the status
 setSubResultStatus(ft2,'Pass');
 setSubResultStatusText(ft2,['The ''Conditional input branch execution''' ...
 'check box is cleared.']);
else
 % 'Conditional input branch execution' is selected
 % Set subresult status to 'Warning' and display text describing the status
 setSubResultStatus(ft2,'Warn');
 setSubResultStatusText(ft2,['The ''Conditional input branch execution'''...
 ' check box is selected.']);
 setRecAction(ft2,['Clear the ''Optimization > Conditional input branch ' ...
 'execution'' check box in the Configuration Parameters dialog box.']);
 ResultStatus = false;
end

ResultDescription{end+1} = ft2; % Pass list template object to Model Advisor
mdladvObj.setCheckResultStatus(ResultStatus); % Set overall check status
% Enable Modify Settings button when check fails
mdladvObj.setActionEnable(~ResultStatus);

Basic Check with Pass/Fail Status
This example shows a callback function for a custom basic check that finds and reports
unconnected lines, input ports, and output ports.

A basic check includes the following items in the results:

• A description of what the check is reviewing.
• References to standards, if applicable.

7 Create Model Advisor Checks

7-66

• The status of the check.
• A description of the status.
• Results for the check.
• The recommended actions to take when the check does not pass.

A basic check does not include the following items in the results:

• Subcheck results.
• A line below the results.

% Sample Check 2 Callback Function: Basic Check with Pass/Fail Status
% Find and report unconnected lines, input ports, and output ports
function ResultDescription = unconnectedObjectsCallbackUsingFT(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
% Initialize variables
mdladvObj.setCheckResultStatus(false);
ResultDescription ={};
ResultStatus = false; % Default check status is 'Warning'
system = getfullname(system);
isSubsystem = ~strcmp(bdroot(system), system);

% Format results in a list using Model Advisor Result Template API
% Create a list template object
ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results
if isSubsystem
 checkDescStr = ['Identify unconnected lines, input ports, and ' ...
 'output ports in the subsystem.'];
else
 checkDescStr = ['Identify unconnected lines, input ports, and ' ...
 'output ports in the model.'];
end
setCheckText(ft,checkDescStr);

% Add See Also section with references to applicable standards
checkStdRef = 'IEC 61508-3, Table A.3 (3) ''Language subset'' ';
docLinkSfunction{1} = {checkStdRef};
setRefLink(ft,docLinkSfunction);

% Basic checks do not have subresults, suppress line
setSubBar(ft,false);

% Check for unconnected lines, inputs, and outputs
sysHandle = get_param(system, 'Handle');
uLines = find_system(sysHandle, ...
 'Findall', 'on', ...
 'LookUnderMasks', 'on', ...
 'Type', 'line', ...
 'Connected', 'off');
uPorts = find_system(sysHandle, ...

 Create Callback Functions and Results

7-67

 'Findall', 'on', ...
 'LookUnderMasks', 'on', ...
 'Type', 'port', ...
 'Line', -1);

% Use parents of port objects for the correct highlight behavior
if ~isempty(uPorts)
 for i=1:length(uPorts)
 uPorts(i) = get_param(get_param(uPorts(i), 'Parent'), 'Handle');
 end
end

% Create cell array of unconnected object handles
modelObj = {};
searchResult = union(uLines, uPorts);
for i = 1:length(searchResult)
 modelObj{i} = searchResult(i);
end

% No unconnected objects in model
% Set result status to 'Pass' and display text describing the status
if isempty(modelObj)
 setSubResultStatus(ft,'Pass');
 if isSubsystem
 setSubResultStatusText(ft,['There are no unconnected lines, ' ...
 'input ports, and output ports in this subsystem.']);
 else
 setSubResultStatusText(ft,['There are no unconnected lines, ' ...
 'input ports, and output ports in this model.']);
 end
 ResultStatus = true;
% Unconnected objects in model
% Set result status to 'Warning' and display text describing the status
else
 setSubResultStatus(ft,'Warn');
 if ~isSubsystem
 setSubResultStatusText(ft,['The following lines, input ports, ' ...
 'or output ports are not properly connected in the system: ' system]);
 else
 setSubResultStatusText(ft,['The following lines, input ports, or ' ...
 'output ports are not properly connected in the subsystem: ' system]);
 end
 % Specify recommended action to fix the warning
 setRecAction(ft,'Connect the specified blocks.');
 % Create a list of handles to problem objects
 setListObj(ft,modelObj);
 ResultStatus = false;
end
% Pass the list template object to the Model Advisor
ResultDescription{end+1} = ft;
% Set overall check status
mdladvObj.setCheckResultStatus(ResultStatus);

7 Create Model Advisor Checks

7-68

See Also
ModelAdvisor.Check | ModelAdvisor.FormatTemplate | ModelAdvisor.Task

More About
• Defining Custom Groups on page 8-13
• “Define Custom Checks” on page 7-46
• “Format Check Results” on page 7-73
• “Register Checks” on page 7-41

 See Also

7-69

Exclude Blocks From Custom Checks
This example shows how to exclude blocks from custom checks. To save time during
model development and verification, you might decide to exclude individual blocks from
custom checks in a Model Advisor analysis. To exclude custom checks from Simulink
blocks and Stateflow charts, use the ModelAdvisor.Check.supportExclusion and
Simulink.ModelAdvisor.filterResultWithExclusion functions in the
sl_customization.m file.

Note Model Advisor does not support the exclusion of StateflowTruth Table blocks.

Update the sl_customization.m File

1 To open the example model, at the command prompt, type slvnvdemo_mdladv.
2 In the model window, double-click View demo sl_customization.m.
3 To exclude the custom check Check Simulink block font from blocks during Model

Advisor analysis, make three modifications to the sl_customization.m file.

a Enable the Check Simulink block font check to support check exclusions by
using the ModelAdvisor.Check.supportExclusion property. You can now
exclude the check from model blocks. After
rec.setInputParametersLayoutGrid([3 2]);, add
rec.supportExclusion = true;. The check 1 section of the function
defineModelAdvisorChecks now looks like:

% --- sample check 1
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';
rec.TitleTips = 'Example style three callback';
rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');
rec.setInputParametersLayoutGrid([3 2]);
rec.supportExclusion = true;

b Use the Simulink.ModelAdvisor.filterResultWithExclusion function to
filter model objects causing a check warning or failure with checks that have
exclusions enabled. To do this, there are two locations in the
sl_customization.m file to modify, both in the [ResultDescription,
ResultDetails] = SampleStyleThreeCallback(system) function:

• After both instances of

7 Create Model Advisor Checks

7-70

searchResult = setdiff(allBlks, regularBlks);

add

searchResult = mdladvObj.filterResultWithExclusion(searchResult);

• In the first location, the function now looks like:

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
searchResult = mdladvObj.filterResultWithExclusion(searchResult);
if ~isempty(searchResult)

• In the second location, the function now looks like:

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',regularFontSize);
% look for different font size blocks in the system
searchResult = setdiff(allBlks, regularBlks);
searchResult = mdladvObj.filterResultWithExclusion(searchResult);
if ~isempty(searchResult)

4 Save the sl_customization.m file. If you are asked if it is ok to overwrite the file,
click OK.

Create and Save Exclusions

1 In the model window, double-click Launch Model Advisor.
2 If the By Product folder is not displayed in the Model Advisor window, select Show

By Product Folder from the Settings > Preferences dialog box.
3 In the left pane of the Model Advisor window, select the By Product > Demo >

Check Simulink block font check. In the right pane, select Run This Check. The
check fails.

4
In the Model Advisor window, click the Enable highlighting button (). The
blocks causing the Check Simulink block font check failure are highlighted in
yellow.

5 In the model window, right-click the X block and select Model Advisor > Exclude
block only > Check Simulink block font.

6 In the Model Advisor Exclusion Editor, click OK to create the exclusion file.

 Exclude Blocks From Custom Checks

7-71

7 In the model window, right-click the Input block and select Model Advisor >
Exclude block only > Check Simulink block font.

Review Exclusions

1 In the Model Advisor Exclusion Editor, click OK to update the exclusion file.
2 In the left pane of the Model Advisor window, select the By Product > Demo >

Check Simulink block font check. In the right pane, select Run This Check. The
check now passes. In the right-pane of the Model Advisor window, you can see the
Check Exclusion Rules that the Model Advisor during the analysis.

3 Close slvnvdemo_mdladv.

See Also
Simulink.ModelAdvisor | ModelAdvisor.Check.supportExclusion

Related Examples
• “Select and Run Model Advisor Checks” (Simulink)
• Example of Excluding Gain and Outport Blocks From Checks on page 3-36

More About
• Excluding Blocks From Model Advisor Checks on page 3-26
• “Run Model Checks” (Simulink)
• “Address Model Check Results with Highlighting” (Simulink)

7 Create Model Advisor Checks

7-72

Format Check Results

Format Results
You can make the analysis results of your custom checks appear similar to each other
with minimal scripting using the ModelAdvisor.FormatTemplate class.

If this format template does not meet your needs, or if you want to format action results,
use the Model Advisor Formatting API to produce formatted outputs in the Model Advisor.
The following constructors of the ModelAdvisor class allow you to format the output.

Constructor Description
ModelAdvisor.Text Create Model Advisor text output.
ModelAdvisor.List Create list.
ModelAdvisor.Table Create table.
ModelAdvisor.Paragraph Create and format paragraph.
ModelAdvisor.LineBreak Insert line break.
ModelAdvisor.Image Include image in Model Advisor output.

Format Text
Text is the simplest form of output. You can format text in many different ways. The
default text formatting is:

• Empty
• Default color (black)
• Unformatted (not bold, italicized, underlined, linked, subscripted, or superscripted)

To change text formatting, use the ModelAdvisor.Text constructor. When you want one
type of formatting for all text, use this syntax:

ModelAdvisor.Text(content, {attributes})

When you want multiple types of formatting, you must build the text.
t1 = ModelAdvisor.Text('It is ');
t2 = ModelAdvisor.Text('recommended', {'italic'});
t3 = ModelAdvisor.Text(' to use same font for ');

 Format Check Results

7-73

t4 = ModelAdvisor.Text('blocks', {'bold'});
t5 = ModelAdvisor.Text(' for a uniform appearance in the model.');

result = [t1, t2, t3, t4, t5];

Add ASCII and Extended ASCII characters using the MATLAB char command. For more
information, see the ModelAdvisor.Text class page.

Format Lists
You can create two types of lists: numbered and bulleted. The default list formatting is
bulleted. Use the ModelAdvisor.List constructor to create and format lists. You can
create lists with indented subsections, formatted as either numbered or bulleted.

subList = ModelAdvisor.List();
subList.setType('numbered')
subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));
subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

topList = ModelAdvisor.List();
topList.addItem([ModelAdvisor.Text('Entry level 1',{'keyword','bold'}), subList]);
topList.addItem([ModelAdvisor.Text('Entry level 2',{'keyword','bold'}), subList]);

Format Tables
The default table formatting is:

• Default color (black)
• Left justified
• Bold title, row, and column headings

Change table formatting using the ModelAdvisor.Table constructor.

This example creates a subtable within a table.

table1 = ModelAdvisor.Table(1,1);
table2 = ModelAdvisor.Table(2,3);
table2.setHeading('Table 2');
table2.setHeadingAlign('center');
table2.setColHeading(1, 'Header 1');
table2.setColHeading(2, 'Header 2');
table2.setColHeading(3, 'Header 3');
table1.setHeading('Table 1');
table1.setEntry(1,1,table2);

7 Create Model Advisor Checks

7-74

This example creates a table with five rows and five columns containing randomly
generated numbers. Use the MATLAB code in a callback function to create the table. The
Model Advisor displays table1 in the results.

% ModelAdvisor.Table example

matrixData = rand(5,5) * 10^5;

% initialize a table with 5 rows and 5 columns (heading rows not counting)
table1 = ModelAdvisor.Table(5,5);

% set column headings
for n=1:5
 table1.setColHeading(n, ['Column ', num2str(n)]);
end

% set alignment of second column heading
table1.setColHeadingAlign(2, 'center');

% set column width of second column
table1.setColWidth(2, 3);

% set row headings
for n=1:5
 table1.setRowHeading(n, ['Row ', num2str(n)]);
end

% set Table content
for rowIndex=1:5
 for colIndex=1:5
 table1.setEntry(rowIndex, colIndex, ...
 num2str(matrixData(rowIndex, colIndex)));

 % set alignment of entries in second row
 if colIndex == 2
 table1.setEntryAlign(rowIndex, colIndex, 'center');
 end
 end
end

% overwrite content of cell 3,3 with a ModelAdvisor.Text

 Format Check Results

7-75

text = ModelAdvisor.Text('Example Text');
table1.setEntry(3,3, text)

Format Paragraphs
You must handle paragraphs explicitly because most markup languages do not support
line breaks. The default paragraph formatting is:

• Empty
• Default color (black)
• Unformatted, (not bold, italicized, underlined, linked, subscripted, or superscripted)
• Aligned left

If you want to change paragraph formatting, use the ModelAdvisor.Paragraph class.

Formatted Output
The following is the example from “Simple Check Callback Function” on page 7-56,
reformatted using the Model Advisor Formatting API.
function result = SampleStyleOneCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
if strcmp(get_param(bdroot(system), 'ScreenColor'),'white')
 result = ModelAdvisor.Text('Passed',{'pass'});
 mdladvObj.setCheckResultStatus(true);
else
 msg1 = ModelAdvisor.Text(...
 ['It is recommended to select a Simulink window screen color'...
 ' of white to ensure a readable and printable model. Click ']);
 msg2 = ModelAdvisor.Text('here');
 msg2.setHyperlink('matlab: set_param(bdroot,''ScreenColor'',''white'')');
 msg3 = ModelAdvisor.Text(' to change screen color to white.');
 result = [msg1, msg2, msg3];

7 Create Model Advisor Checks

7-76

 mdladvObj.setCheckResultStatus(false);
end

Format Linebreaks
You can add a line break between two lines of text with the ModelAdvisor.LineBreak
constructor.
result = ModelAdvisor.Paragraph;
addItem(result, [resultText1 ModelAdvisor.LineBreak resultText2]);

Format Images
To include an image in Model Advisor output, use the ModelAdvisor.Image constructor.
To create an Image object, use this syntax.
image_obj = ModelAdvisor.Image;

See Also
ModelAdvisor.Check | ModelAdvisor.FormatTemplate | ModelAdvisor.Task

Related Examples
• “Simple Check Callback Function” on page 7-56

More About
• Defining Custom Groups on page 8-13
• “Define Custom Checks” on page 7-46

 See Also

7-77

Create Custom Configurations by
Organizing Checks and Folders

8

Create Custom Configurations
You can use the Model Advisor APIs and Model Advisor Configuration Editor available
with Simulink Check to do the tasks listed in the following table.

To See
Create custom configurations by organizing
Model Advisor checks and folders.

“Organize Checks and Folders Using the
Model Advisor Configuration Editor” on
page 8-5

Specify the order in which you make
changes to your model.

“Create Procedural-Based Configurations”
on page 9-5

Deploy custom configuration to your users. “How to Deploy Custom Configurations” on
page 10-3

8 Create Custom Configurations by Organizing Checks and Folders

8-2

Create Configurations by Organizing Checks and Folders
To customize the Model Advisor with MathWorks and custom checks, perform the
following tasks:

1 Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.

2 Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

3 Organize the checks into new and existing folders to create custom configurations.
See “Organize and Deploy Model Advisor Checks”.

a Identify which checks you want to include in your custom Model Advisor
configuration. You can use MathWorks checks and/or custom checks.

b Create the custom configurations using either of the following:

• Model Advisor Configuration Editor - “Organize Checks and Folders Using the
Model Advisor Configuration Editor” on page 8-5.

• A customization file - “Organize Customization File Checks and Folders” on
page 8-11.

c Verify the custom configuration. See “Verify and Use Custom Configurations” on
page 8-17.

4 Optionally, deploy the custom configurations to your users. See “Organize and Deploy
Model Advisor Checks”.

5 Verify that models comply with modeling guidelines. See “Run Model Checks”
(Simulink).

 Create Configurations by Organizing Checks and Folders

8-3

Create Procedural-Based Configurations
You can create a procedural-based configuration that allows you to specify the order in
which you make changes to your model. You organize checks into procedures using the
procedures API. A check in a procedure does not run until the previous check passes. A
procedural-based configuration runs until a check fails, requiring you to modify the model
to pass the check and proceed to the next check. Changes you make to your model to pass
the checks therefore follow a specific order.

To create a procedural-based configuration, perform the following tasks:

1 Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.

2 Decide on order of changes to your model.
3 Identify checks that provide information about the modifications you want to make to

your model. For example, if you want to modify your model optimization settings, the
Check optimization settings check provides information about the settings. You can
use custom checks and checks provided by MathWorks.

4 Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

5 Organize the checks into procedures for a procedural-based configuration. See
“Create Procedural-Based Configurations” on page 9-5.

a Create procedures using the procedure API. For detailed information, see
“Create Procedures Using the Procedures API” on page 9-2.

b Create the custom configuration by using a customization file. See “Organize
Customization File Checks and Folders” on page 8-11.

c Verify the custom configuration as described in “Verify and Use Custom
Configurations” on page 8-17.

6 Optionally, deploy the custom configurations to your users. For detailed information,
see “Organize and Deploy Model Advisor Checks”.

7 Verify that models comply with modeling guidelines. For detailed information, see
“Run Model Checks” (Simulink).

8 Create Custom Configurations by Organizing Checks and Folders

8-4

Organize Checks and Folders Using the Model Advisor
Configuration Editor

Overview of the Model Advisor Configuration Editor
When you start the Model Advisor Configuration Editor, two windows open; the Model
Advisor Configuration Editor and the Model Advisor Check Browser. The Configuration
Editor window consists of two panes: the Model Advisor Configuration Editor hierarchy
and the Workflow. The Model Advisor Configuration Editor hierarchy lists the checks and
folders in the current configuration. The Workflow on the right shows the common
workflow you use to create a custom configuration.

Model Advisor Configuration Editor

 Organize Checks and Folders Using the Model Advisor Configuration Editor

8-5

If you want the Model Advisor Configuration Editor hierarchy to list only the checks
configured for edit-time checking, in the Show field, select Edit-Time Supported
Checks. Or, in the model window, select Analysis > Model Advisor > Configure
Advisor Edit-Time Checks.

When you select a folder or check in the Model Advisor Configuration Editor hierarchy,
the Workflow pane changes to display information about the check or folder. You can
change the display name of the check or folder in this pane.

The Model Advisor Check Browser window includes a read-only list of available checks. If
you delete a check in the Model Advisor Configuration Editor, you can retrieve a copy of it
from the Model Advisor Check Browser.

8 Create Custom Configurations by Organizing Checks and Folders

8-6

Model Advisor Check Browser

Using the Model Advisor Configuration Editor, you can perform the following actions.

To... Select...
Create new configurations File > New
Find checks and folders in the Model Advisor
Check Browser

View > Check Browser

Add checks and folders to the configuration Edit > Copy
Edit > Paste
Edit > New folder
The check or folder and drag and drop

Remove checks and folders from the
configuration

Edit > Delete
Edit > Cut

 Organize Checks and Folders Using the Model Advisor Configuration Editor

8-7

To... Select...
Reorder checks and folders Edit > Move up

Edit > Move down
The check or folder and drag and drop

Rename checks and folders

Note MathWorks folder display names are
restricted. When you rename a folder, you cannot
use the restricted display names.

The check or folder and edit Display Name in
right pane.

Allow or gray out the check box control for
checks and folders

Tip This capability is equivalent to enabling
checks, described in “Display and Enable
Checks” on page 7-47.

Edit > Enable
Edit > Disable

Save the configuration as a MAT file for use and
distribution

File > Save
File > Save As

Set the configuration so it opens by default in the
Model Advisor

File > Set Current Configuration as Default

Restore the MathWorks default configuration File > Restore Default Configuration
Load and edit saved configurations File > Open

Start the Model Advisor Configuration Editor
Before starting the Model Advisor Configuration Editor, verify that the current folder is
writable. If the folder is not writable, you see an error message when you start the Model
Advisor Configuration Editor.

Note

• The Model Advisor Configuration Editor uses the slprj folder in the code generation
folder (Simulink). If the slprj folder does not exist in the code generation folder, the
Model Advisor Configuration Editor creates it.

8 Create Custom Configurations by Organizing Checks and Folders

8-8

1 To include custom checks in the new Model Advisor configuration, update the
Simulink environment to include your sl_customization.m file.

2 Start the Model Advisor Configuration Editor.

To start the Model
Advisor Configuration
Editor...

Do this:

Programmatically At the MATLAB command line, enter
Simulink.ModelAdvisor.openConfigUI.

From the Model Advisor a Start the Model Advisor.
b Select Settings > Open Configuration Editor.

The Model Advisor Configuration Editor and Model Advisor Check Browser windows
open.

3 Optionally, to edit an existing configuration in the Model Advisor Configuration Editor
window:

a Select File > Open.
b In the Open dialog box, navigate to the configuration file that you want to edit.
c Click Open.

Organize Checks and Folders Using the Model Advisor
Configuration Editor
The following tutorial steps you through creating a custom configuration.

1 Open the Model Advisor Configuration Editor at the MATLAB command line by
entering Simulink.ModelAdvisor.openConfigUI .

2 In the Model Advisor Configuration Editor, in the left pane, delete the By Product
and By Task folders, to start with a blank configuration.

3 Select the root node which is labeled Model Advisor Configuration Editor.
4 In the toolbar, click the New Folder button to create a folder.
5 In the left pane, select the new folder.
6 In the right pane, edit Display Name to rename the folder. For the purposes of this

tutorial, rename the folder to Review Optimizations.

 Organize Checks and Folders Using the Model Advisor Configuration Editor

8-9

7 In the Model Advisor Check Browser window, in the Find field, enter optimization
to find Simulink > Check optimization settings.

8 Drag and drop Check optimization settings into Review Optimizations.
9 In the Model Advisor Check Browser window, find Simulink Check > Modeling

Standards > DO-178C/DO-331Checks > Check safety-related optimization
settings.

10 Drag and drop Check safety-related optimization settings into Review
Optimizations.

11 In the Model Advisor Configuration Editor window, expand Review Optimizations.
12 Rename Check optimization settings to Check Simulink optimization settings.
13 Select File > Save As to save the configuration.
14 Name the configuration optimization_configuration.mat.
15 Close the Model Advisor Configuration Editor window.

Tip To move a check to the first position in a folder:

1 Drag the check to the second position.
2 Right-click the check and select Move up.

See Also
Simulink.ModelAdvisor | ModelAdvisor.Check

Related Examples
• “Update the Environment to Include Your sl_customization File” on page 8-17

8 Create Custom Configurations by Organizing Checks and Folders

8-10

Organize Customization File Checks and Folders

Customization File Overview
The sl_customization.m file contains a set of functions for registering and defining
custom checks, tasks, and groups. To set up the sl_customization.m file, follow the
guidelines in this table.

Function Description Required or Optional
sl_customization() Registers custom checks and

tasks, folders with the Simulink
customization manager at
startup. See “Register Checks”
on page 7-41.

Required for customizations to
the Model Advisor.

One or more check definitions Defines custom checks. See
“Define Custom Checks” on
page 7-46.

Required for custom checks and
to add custom checks to the By
Product folder.

One or more task definitions Defines custom tasks. See
“Define Custom Tasks” on page
8-13.

Required to add custom checks
to the Model Advisor, except
when adding the checks to the
By Product folder. Write one
task for each check that you add
to the Model Advisor.

One or more groups Defines custom groups. See
“Define Custom Tasks” on page
8-13.

Required to add custom tasks to
new folders in the Model
Advisor, except when adding a
new subfolder to the By
Product folder. Write one group
definition for each new folder.

If the By Product folder is not displayed in the Model Advisor window, select Show By
Product Folder from the Settings > Preferences dialog box.

 Organize Customization File Checks and Folders

8-11

Register Tasks and Folders
Create sl_customization Function

To add tasks and folders to the Model Advisor, create the sl_customization.m file on
your MATLAB path. Then create the sl_customization() function in the
sl_customization.m file on your MATLAB path.

Tip

• You can have more than one sl_customization.m file on your MATLAB path.
• Do not place an sl_customization.m file that customizes the Model Advisor in your

root MATLAB folder or its subfolders, except for the matlabroot/work folder.
Otherwise, the Model Advisor ignores the customizations that the file specifies.

The sl_customization function accepts one argument, a customization manager
object, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom checks, tasks,
and folders. Use these methods to register customizations specific to your application, as
described in the sections that follow.

Register Tasks and Folders

The customization manager provides the following methods for registering custom tasks
and folders:

• addModelAdvisorTaskFcn (@factorygroupDefinitionFcn)

Registers the tasks that you define in factorygroupDefinitionFcn to the By Task
folder of the Model Advisor.

The factorygroupDefinitionFcn argument is a handle to the function that defines
the checks to add to the Model Advisor as instances of the
ModelAdvisor.FactoryGroup class.

• addModelAdvisorTaskAdvisorFcn (@taskDefinitionFcn)

8 Create Custom Configurations by Organizing Checks and Folders

8-12

Registers the tasks and folders that you define in taskDefinitionFcn to the folder
in the Model Advisor that you specify using the ModelAdvisor.Root.publish
method or the ModelAdvisor.Group class.

The taskDefinitionFcn argument is a handle to the function that defines custom
tasks and folders. Simulink adds the checks and folders to the Model Advisor as
instances of the ModelAdvisor.Task or ModelAdvisor.Group classes.

The following example shows how to register custom tasks and folders:

Note If you add custom checks within the sl_customization.m file, include methods
for registering the checks in the sl_customization function.

Define Custom Tasks
Add Check to Custom or Multiple Folders Using Tasks

You can use custom tasks for adding checks to the Model Advisor, either in multiple
folders or in a single, custom folder. You define custom tasks in one or more functions that
specify the properties of each instance of the ModelAdvisor.Task class. Define one
instance of this class for each custom task that you want to add to the Model Advisor.
Then register the custom task. The following sections describe how to define custom
tasks.

To add a check to multiple folders or a single, custom folder:

1 Create a check using the ModelAdvisor.Check class.
2 Register a task wrapper for the check.
3 If you want to add the check to folders that are not already present, register and

create the folders using the ModelAdvisor.Group class.
4 Add a check to the task using the ModelAdvisor.Task.setCheck method.
5 Add the task to each folder using the ModelAdvisor.Task.addTask method and

the task ID.

Create Custom Tasks Using MathWorks Checks

You can add MathWorks checks to your custom folders by defining the checks as custom
tasks. When you add the checks as custom tasks, you identify checks by the check ID.

 Organize Customization File Checks and Folders

8-13

To find MathWorks check IDs:

1 In the Model Advisor, select View > Source tab.
2 Navigate to the folder that contains the MathWorks check.
3 In the right pane, click Source. The Model Advisor displays the Title, TitleID, and

Source information for each check in the folder.
4 Select and copy the TitleID of the check that you want to add as a task.

Display and Enable Tasks

The Visible, Enable, and Value properties interact the same way for tasks as they do
for checks.

Define Where Tasks Appear

You can specify where the Model Advisor places tasks within the Model Advisor using the
following guidelines:

• To place a task in a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

• To place a task in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

Task Definition Function

The following example shows a task definition function. This function defines three tasks.

Define Custom Folders
About Custom Folders

Use folders to group checks in the Model Advisor by functionality or usage. You define
custom folders in:

• A factory group definition function that specifies the properties of each instance of the
ModelAdvisor.FactoryGroup class.

• A task definition function that specifies the properties of each instance of the
ModelAdvisor.Group class.

8 Create Custom Configurations by Organizing Checks and Folders

8-14

Define one instance of the group classes for each folder that you want to add to the Model
Advisor.

Add Custom Folders

To add a custom folder:

1 Create the folder using the ModelAdvisor.Group or
ModelAdvisor.FactoryGroup classes.

2 Register the folder.

Define Where Custom Folders Appear

You can specify the location of custom folders within the Model Advisor using the
following guidelines:

• To define a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

• To define a new folder in the By Task folder, use the ModelAdvisor.FactoryGroup
class.

Note To define a new folder in the By Product folder, use the
ModelAdvisor.Root.publish method within a custom check. If the By Product folder
is not displayed in the Model Advisor window, select Show By Product Folder from the
Settings > Preferences dialog box.

Group Definition

The following examples shows a group definition. The definition places the tasks inside a
folder called My Group under the Model Advisor root. The task definition function
includes this group definition.

The following example shows a factory group definition function. The definition places the
checks into a folder called Demo Factory Group inside of the By Task folder.

 Organize Customization File Checks and Folders

8-15

Customization Example
The Simulink Check software provides an example that shows how to customize the
Model Advisor by adding:

• Custom checks
• Check input parameters
• Check actions
• Check list views to call the Model Advisor Result Explorer
• Custom tasks to include the custom checks in the Model Advisor
• Custom folders for grouping the checks
• Custom procedures

The example also provides the source code of the sl_customization.m file that
executes the customizations.

To run the example:

1 At the MATLAB command line, typeslvnvdemo_mdladv.
2 Follow the instructions in the model.

See Also
ModelAdvisor.Check | ModelAdvisor.FactoryGroup | ModelAdvisor.Group |
ModelAdvisor.Root.publish | ModelAdvisor.Task

Related Examples
• “Update the Environment to Include Your sl_customization File” on page 8-17

More About
• “Define Custom Checks” on page 7-46
• “Display and Enable Checks” on page 7-47
• “Register Checks” on page 7-41

8 Create Custom Configurations by Organizing Checks and Folders

8-16

Verify and Use Custom Configurations
Update the Environment to Include Your sl_customization File
When you start Simulink, it reads customization (sl_customization.m) files. If you
change the contents of your customization file, update your environment by performing
these tasks:

1 If you previously started the Model Advisor:

a Close the model from which you started the Model Advisor
b Clear the data associated with the previous Model Advisor session by removing

the slprj folder from your code generation folder (Simulink).
2 At the MATLAB command line, enter:

sl_refresh_customizations

If you have created custom checks, at the MATLAB command line, then also enter:

Advisor.Manager.refresh_customizations
3 Open your model.
4 Start the Model Advisor.

Verify Custom Configurations
To verify a custom configuration:

1 If you created custom checks, or created the custom configuration using the
sl_customization method, update the Simulink environment.

2 Open a model.
3 From the model window, start the Model Advisor.
4 Select Settings > Load Configuration. If you see a warning that the Model Advisor

report corresponds to a different configuration, click Load to continue.
5 In the Open dialog box, navigate to and select your custom configuration.
6 When the Model Advisor reopens, verify that the configuration contains the new

folders and checks. For example, the Review Optimizations folder and the Check
Simulink optimization settings and Check safety-related optimization settings
checks.

 Verify and Use Custom Configurations

8-17

7 Optionally, run the checks.

See Also

More About
• “Organize Checks and Folders Using the Model Advisor Configuration Editor” on

page 8-5

8 Create Custom Configurations by Organizing Checks and Folders

8-18

Customize Model Advisor Check for Nondefault Block
Attributes

You can customize the list of nondefault block parameters that are flagged by the Model
Advisor MAAB check Check for Nondefault Block Attributes (Check ID:
mathworks.maab.db_0140).

1 In the Model Advisor, select Settings > Open Configuration Editor.
2 In the Find field, enter db_0140 and press Enter.
3 The Model Advisor Configuration Editor window displays the check Check for

Nondefault Block Attributes. On the right pane, under Input Parameters >
Standard, select Custom. The Custom setting enables editing of the parameter list.

4 In the table, find the block type for which you want to change the nondefault
parameter list. Under Parameter, select a cell to edit. The parameters are separated
with spaces.

5 Delete or add a parameter name that corresponds to the BlockType. For example, to
remove the rounding method parameter from the check for each gain block, find
Gain under BlockType. Under Parameter, delete the parameter name RndMeth.
Check ID: mathworks.maab.db_0140 no longer checks for the display of
nondefault rounding methods from gain blocks’ annotations.

See Also

More About
• “Check for nondefault block attributes”
• “Customize Model Advisor Check for Nondefault Block Attributes” on page 8-19
• db_0140: Display of basic block parameters

 Customize Model Advisor Check for Nondefault Block Attributes

8-19

Automatically Fix Display of Nondefault Block
Parameters

To conform with Model Advisor MAAB check Check for Nondefault Block Attributes
(Check ID: mathworks.maab.db_0140), you can use the Add nondefault values into
block annotation button to automatically add descriptive text to the model editor
window.

1 At the command prompt, type vdp and press Enter. The Van der Pol equation model
opens in the Simulink editor window.

2 The model has two blocks which do not display nondefault values as annotations. Run
the Model Advisor from Analysis > Model Advisor > Model Advisor.

3 On the left pane, select By Product > Simulink Check > Modeling Standards >
MathWorks Automotive Advisory Board Checks. On the right pane, run the check
by selecting Run Selected Checks.

4 The Model Advisor runs the check and displays a warning for the integrator block
that has a nonzero initial condition not currently displayed. On the Model Advisor

toolbar, select Enable highlighting () to highlight the blocks causing the
warning.

5 In the right pane of the Model Advisor window, select Add nondefault values into
block annotation to automatically add the nondefault attribute and value to the
integrator block’s annotation. Model Advisor displays InitialCondition = 2.

6 Run the check again to clear the warning.

8 Create Custom Configurations by Organizing Checks and Folders

8-20

See Also

More About
• “Check for nondefault block attributes”
• “Automatically Fix Display of Nondefault Block Parameters” on page 8-20
• db_0140: Display of basic block parameters
• “Select and Run Model Advisor Checks” (Simulink)

 See Also

8-21

Create Procedural-Based Model
Advisor Configurations

9

Create Procedures

What Is a Procedure?
A procedure is a series of checks. The checks in a procedure depend on passing the
previous checks. If Check A is the first check in a procedure and Check B follows, the
Model Advisor does not run Check B until Check A passes. Checks A and B can be either
custom or provided by MathWorks.

You create procedures with the ModelAdvisor.Procedure class API. You first add the
checks to tasks, which are wrappers for the checks. The tasks are added to procedures.

When creating procedural checks, be aware of potential conflicts with the checks. Verify
that it is possible to pass both checks.

Create Procedures Using the Procedures API
You use the ModelAdvisor.Procedure class to create procedural checks.

1 Add each check to a task using the ModelAdvisor.Task.setCheck method. The
task is a wrapper for the check. You cannot add checks directly to procedures.

2 Add each task to a procedure using the ModelAdvisor.Procedure.addTask
method.

Define Procedures
You define procedures in a procedure definition function that specifies the properties of
each instance of the ModelAdvisor.Procedure class. Define one instance of the
procedure class for each procedure that you want to add to the Model Advisor. Then
register the procedure using the ModelAdvisor.Root.register method.

Add Subprocedures and Tasks to Procedures

You can add subprocedures or tasks to a procedure. The tasks are wrappers for checks.

• Use the ModelAdvisor.Procedure.addProcedure method to add a subprocedure
to a procedure.

• Use the ModelAdvisor.Procedure.addTask method to add a task to a procedure.

9 Create Procedural-Based Model Advisor Configurations

9-2

Define Where Procedures Appear

You can specify where the Model Advisor places a procedure using the
ModelAdvisor.Group.addProcedure method.

Procedure Definition

The following code example adds procedures to a group:

%Create three procedures
MAP1=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure1');
MAP2=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure2');
MAP3=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure3');

%Create a group
MAG = ModelAdvisor.Group('com.mathworks.sample.myGroup');

%Add the three procedures to the group
addProcedure(MAG, MAP1);
addProcedure(MAG, MAP2);
addProcedure(MAG, MAP3);

%register the group and procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAG);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds subprocedures to a procedure:

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.example.Procedure');

%Create 3 sub procedures
MAP1=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub1');
MAP2=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub2');
MAP3=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub3');

%Add sub procedures to procedure
addProcedure(MAP, MAP1);
addProcedure(MAP, MAP2);
addProcedure(MAP, MAP3);

%register the procedures

 Create Procedures

9-3

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds tasks to a procedure:

%Create three tasks
MAT1=ModelAdvisor.Task('com.mathworks.tasksample.myTask1');
MAT2=ModelAdvisor.Task('com.mathworks.tasksample.myTask2');
MAT3=ModelAdvisor.Task('com.mathworks.tasksample.myTask3');

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.tasksample.myProcedure');

%Add the three tasks to the procedure
addTask(MAP, MAT1);
addTask(MAP, MAT2);
addTask(MAP, MAT3);

%register the procedure and tasks
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAT1);
mdladvRoot.register(MAT2);
mdladvRoot.register(MAT3);

See Also
ModelAdvisor.Procedure | ModelAdvisor.Procedure.addProcedure |
ModelAdvisor.Procedure.addTask | ModelAdvisor.Root.register |
ModelAdvisor.Task.setCheck

Related Examples
• “Create Procedural-Based Configurations” on page 9-5

More About
• “Define Custom Tasks” on page 8-13

9 Create Procedural-Based Model Advisor Configurations

9-4

Create Procedural-Based Configurations

Overview of Procedural-Based Configurations
You can create a procedural-based configuration that allows you to specify the order in
which you make changes to your model. You organize checks into procedures using the
procedures API. A check in a procedure does not run until the previous check passes. A
procedural-based configuration runs until a check fails, requiring you to modify the model
to pass the check and proceed to the next check. Changes you make to your model to pass
the checks therefore follow a specific order.

To create a procedural-based configuration, perform the following tasks:

1 Review the information in “Requirements for Customizing the Model Advisor” on
page 6-2.

2 Decide on order of changes to your model.
3 Identify checks that provide information about the modifications you want to make to

your model. For example, if you want to modify your model optimization settings, the
Check optimization settings check provides information about the settings. You can
use custom checks and checks provided by MathWorks.

4 Optionally, author custom checks in a customization file. See “Create Model Advisor
Checks”.

5 Organize the checks into procedures for a procedural-based configuration. See
“Create Procedural-Based Configurations” on page 9-5.

a Create procedures using the procedure API. For detailed information, see
“Create Procedures Using the Procedures API” on page 9-2.

b Create the custom configuration by using a customization file. See “Organize
Customization File Checks and Folders” on page 8-11.

c Verify the custom configuration as described in “Verify and Use Custom
Configurations” on page 8-17.

6 Optionally, deploy the custom configurations to your users. For detailed information,
see “Organize and Deploy Model Advisor Checks”.

7 Verify that models comply with modeling guidelines. For detailed information, see
“Run Model Checks” (Simulink).

 Create Procedural-Based Configurations

9-5

Create a Procedural-Based Configuration
In this example, you examine a procedural-based configuration.

1 At the MATLAB command line, typeslvnvdemo_mdladv.
2 In the model window, select View demo sl_customization.m. The

sl_customization.m file opens in the MATLAB Editor window.

The file contains four checks created in the function defineModelAdvisorChecks:

• ModelAdvisor.Check('com.mathworks.sample.Check1') - Checks
Simulink block fonts.

• ModelAdvisor.Check('com.mathworks.sample.Check2') - Checks
Simulink window screen color.

• ModelAdvisor.Check('com.mathworks.sample.Check3') - Checks model
optimization settings.

• ModelAdvisor.Check('com.mathworks.sample.Check4') - Checks Gain
block usage.

Each check has a set of fix actions.
3 In the sl_customization.m file, examine the function defineTaskAdvisor.

• The ModelAdvisor.Procedure class API creates procedures My Procedure
and My sub_Procedure:
% Define procedures
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');
MAP.DisplayName='My Procedure';

MAP_sub = ModelAdvisor.Procedure('com.mathworks.sample.sub_ProcedureSample');
MAP_sub.DisplayName='My sub_Procedure';

• The ModelAdvisor.Task class API creates tasks MAT4, MAT5, MAT6, and MAT7.
The ModelAdvisor.Task.setCheck method adds the checks to the tasks:
% Define tasks
MAT4 = ModelAdvisor.Task('com.mathworks.sample.TaskSample4');
MAT4.DisplayName='Check Simulink block font';
MAT4.setCheck('com.mathworks.sample.Check1');
mdladvRoot.register(MAT4);

MAT5 = ModelAdvisor.Task('com.mathworks.sample.TaskSample5');
MAT5.DisplayName='Check Simulink window screen color';
MAT5.setCheck('com.mathworks.sample.Check2');
mdladvRoot.register(MAT5);

9 Create Procedural-Based Model Advisor Configurations

9-6

MAT6 = ModelAdvisor.Task('com.mathworks.sample.TaskSample6');
MAT6.DisplayName='Check model optimization settings';
MAT6.setCheck('com.mathworks.sample.Check3');
mdladvRoot.register(MAT6);

MAT7 = ModelAdvisor.Task('com.mathworks.sample.TaskSample7');
MAT7.DisplayName='Check gain block usage';
MAT7.setCheck('com.mathworks.sample.Check4');
mdladvRoot.register(MAT7);

• The ModelAdvisor.Procedure.addTask method adds task MAT4 to My
Procedure and tasks MAT5, MAT6, and MAT7 to My sub_Procedure. The
ModelAdvisor.Procedure.addProcedure method adds My sub_Procedure
to My Procedure:
% Add tasks to procedures:
% Add Task4 to MAP
MAP.addTask(MAT4);
% Now Add Task5 and Task6 to MAP_sub
MAP_sub.addTask(MAT5);
MAP_sub.addTask(MAT6);
MAP_sub.addTask(MAT7);
% Include the Sub-Procedure in the Procedure
MAP.addProcedure(MAP_sub);

4 From the model window, select Analysis > Model Advisor > Model Advisor to
open the Model Advisor.

5 A System Selector — Model Advisor dialog box opens. Click OK. The Model
Advisor window opens.

6 In the left pane, expand My Procedure > My sub_Procedure. The Check Simulink
block font check is in the My Procedure folder. My sub_Procedure contains Check
Simulink window screen color and Check model optimization settings.

 Create Procedural-Based Configurations

9-7

7 In the left pane of the Model Advisor, select My Procedure. In the right pane of the
Model Advisor, click Run All. The Model Advisor Check Simulink block font check
fails. The Model Advisor does not check the remaining two checks in the My
sub_Procedure folder. Running the checks in the My sub_Procedure folder depends
on passing the Check Simulink block font check.

8 In the Action section of the Model Advisor dialog box, click Fix block fonts.
9 In the left pane of the Model Advisor, select My Procedure. In the right pane of the

Model Advisor, click Run All. The Check Simulink block font check passes. The
Model Advisor runs the Check Simulink window screen color check. This check fails
and the Model Advisor stops checking.

10 In the Action section of the Model Advisor dialog box, click Fix window screen
color.

11 In the left pane of the Model Advisor, select My sub_Procedure. In the right pane of
the Model Advisor, click Run All. The Check Simulink window screen color check
passes. The Model Advisor runs the Check model optimization settings check. This
check warns.

12 In the Action section of the Model Advisor dialog box, click Fix model optimization
settings.

13 In the left pane of the Model Advisor, select Check model optimization settings. In the
right pane of the Model Advisor, click Run This Task. The Check model optimization
settings check passes.

9 Create Procedural-Based Model Advisor Configurations

9-8

See Also
ModelAdvisor.Procedure | ModelAdvisor.Procedure.addProcedure |
ModelAdvisor.Procedure.addTask | ModelAdvisor.Root.register |
ModelAdvisor.Task.setCheck

More About
• “Create Procedures” on page 9-2
• “Define Custom Checks” on page 7-46

 See Also

9-9

Add Checks and Tasks to the Model Advisor
This example shows how to customize the Model Advisor using a MATLAB-based API.

Open the Example Model

Open the example model slvnvdemo_mdladv.

Open the Model Advisor

From the model editor window, launch the Model Advisor by clicking the Model Advisor
icon.

9 Create Procedural-Based Model Advisor Configurations

9-10

In the System Selector dialog, click OK. For this example, the Model Advisor contains:

• Hidden shipping checks
• New checks in the By Task > My Group 2 folder
• Top-level folder My Group
• Top-level folder My Procedure that contains once check and a subprocedure My

sub_Procedure

Explore the Custom Folder

Explore the custom My Group folder:

• In the left pane, click the My Group folder.
• Select the first check, Example task with input parameter and auto-fix ability.
• In the right pane, click Run This Check.
• To examine the results in the Model Advisor Results Explorer dialog, click Explore

Result.
• To automatically fix the issues, return to the Model Advisor and, in the right pane,

click Fix block fonts.

Explore the Custom Procedure Folder

Explore the custom My Procedure folder:

• In the left pane, click the My Procedure folder.
• To run the procedure, in the right pane, click Run All. The procedure runs until a

check fails.
• To automatically fix issues, in the Action section of the right pane, click the

corresponding fix button.

View the Customization Code

To implement these customizations, on the MATLAB path, create an
sl_customization.m file with the following:

function sl_customization(cm)
% SL_CUSTOMIZATION - Model Advisor customization demonstration.

% Copyright 2005-2017 The MathWorks, Inc.

 Add Checks and Tasks to the Model Advisor

9-11

% register custom checks
cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);
% register custom factory group
cm.addModelAdvisorTaskFcn(@defineModelAdvisorTasks);
% register custom tasks.
cm.addModelAdvisorTaskAdvisorFcn(@defineTaskAdvisor);

% -----------------------------
% defines Model Advisor Tasks
% -----------------------------
function defineModelAdvisorTasks
mdladvRoot = ModelAdvisor.Root;

% --- sample factory group
rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');
rec.DisplayName='My Group 2';
rec.Description='Demo Factory Group';
rec.addCheck('com.mathworks.sample.Check1');
rec.addCheck('com.mathworks.sample.Check2');
rec.addCheck('com.mathworks.sample.Check3');
mdladvRoot.publish(rec); % publish inside By Group list

% -----------------------------
% defines Model Advisor Checks
% -----------------------------
function defineModelAdvisorChecks
mdladvRoot = ModelAdvisor.Root;

% --- sample check 1
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';
rec.TitleTips = 'Example style three callback';
rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');
rec.setInputParametersLayoutGrid([3 2]);
% set input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;
inputParam1.Description = 'sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);

9 Create Procedural-Based Model Advisor Configurations

9-12

inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);
inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};
inputParam3.setRowSpan([2 2]);
inputParam3.setColSpan([2 2]);
rec.setInputParameters({inputParam1,inputParam2,inputParam3});
% set fix operation
myAction = ModelAdvisor.Action;
myAction.setCallbackFcn(@sampleActionCB);
myAction.Name='Fix block fonts';
myAction.Description='Click the button to update all blocks with specified font';
rec.setAction(myAction);
rec.ListViewVisible = true;
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% --- sample check 2
rec = ModelAdvisor.Check('com.mathworks.sample.Check2');
rec.Title = 'Check Simulink window screen color';
rec.TitleTips = 'Example style one callback';
rec.setCallbackFcn(@SampleStyleOneCallback,'None','StyleOne');
% set fix operation
myAction2 = ModelAdvisor.Action;
myAction2.setCallbackFcn(@sampleActionCB2);
myAction2.Name='Fix window screen color';
myAction2.Description='Click the button to change Simulink window screen color to white';
rec.setAction(myAction2);
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% --- sample check 3
rec = ModelAdvisor.Check('com.mathworks.sample.Check3');
rec.Title = 'Check model optimization settings';
rec.TitleTips = 'Example style two callback';
rec.setCallbackFcn(@SampleStyleTwoCallback,'None','StyleTwo');
% set fix operation
myAction3 = ModelAdvisor.Action;

 Add Checks and Tasks to the Model Advisor

9-13

myAction3.setCallbackFcn(@sampleActionCB3);
myAction3.Name='Fix model optimization settings';
myAction3.Description='Click the button to turn on model optimization settings';
rec.setAction(myAction3);
mdladvRoot.publish(rec, 'Demo'); % publish check into Demo group.

% -----------------------------
% defines Model Advisor tasks
% please refer to Model Advisor API document for more details.
% -----------------------------
function defineTaskAdvisor
mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.DisplayName='Example task with input parameter and auto-fix ability';
MAT1.setCheck('com.mathworks.sample.Check1');
mdladvRoot.register(MAT1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');
MAT2.DisplayName='Example task 2';
MAT2.setCheck('com.mathworks.sample.Check2');
mdladvRoot.register(MAT2);

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');
MAT3.DisplayName='Example task 3';
MAT3.setCheck('com.mathworks.sample.Check3');
mdladvRoot.register(MAT3);

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');
MAG.DisplayName='My Group';
MAG.addTask(MAT1);
MAG.addTask(MAT2);
MAG.addTask(MAT3);
mdladvRoot.publish(MAG); % publish under Root

% Define procedures
MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');
MAP.DisplayName='My Procedure';

MAP_sub = ModelAdvisor.Procedure('com.mathworks.sample.sub_ProcedureSample');
MAP_sub.DisplayName='My sub_Procedure';

% Define tasks

9 Create Procedural-Based Model Advisor Configurations

9-14

MAT4 = ModelAdvisor.Task('com.mathworks.sample.TaskSample4');
MAT4.DisplayName='Check Simulink block font';
MAT4.setCheck('com.mathworks.sample.Check1');
mdladvRoot.register(MAT4);

MAT5 = ModelAdvisor.Task('com.mathworks.sample.TaskSample5');
MAT5.DisplayName='Check Simulink window screen color';
MAT5.setCheck('com.mathworks.sample.Check2');
mdladvRoot.register(MAT5);

MAT6 = ModelAdvisor.Task('com.mathworks.sample.TaskSample6');
MAT6.DisplayName='Check model optimization settings';
MAT6.setCheck('com.mathworks.sample.Check3');
mdladvRoot.register(MAT6);

% Add tasks to procedures:
% Add Task4 to MAP
MAP.addTask(MAT4);
% Now Add Task5 and Task6 to MAP_sub
MAP_sub.addTask(MAT5);
MAP_sub.addTask(MAT6);
% Include the Sub-Procedure in the Procedure
MAP.addProcedure(MAP_sub);

mdladvRoot.register(MAP_sub); % publish under Root
mdladvRoot.publish(MAP); % publish under Root

% -----------------------------
% Sample StyleThree callback function,
% please refer to Model Advisor API document for more details.
% -----------------------------
function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)
ResultDescription ={};
ResultDetails ={};

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);
mdladvObj.setCheckResultStatus(true);
needEnableAction = false;
% get input parameters
inputParams = mdladvObj.getInputParameters;
skipFontCheck = inputParams{1}.Value;
regularFontSize = inputParams{2}.Value;
regularFontName = inputParams{3}.Value;

 Add Checks and Tasks to the Model Advisor

9-15

if skipFontCheck
 ResultDescription{end+1} = ModelAdvisor.Paragraph('Skipped.');
 ResultDetails{end+1} = {};
 return
end
regularFontSize = str2double(regularFontSize);
if regularFontSize<1 || regularFontSize>=99
 mdladvObj.setCheckResultStatus(false);
 ResultDescription{end+1} = ModelAdvisor.Paragraph('Invalid font size. Please enter a value between 1 and 99');
 ResultDetails{end+1} = {};
end

% find all blocks inside current system
allBlks = find_system(system);

% block diagram doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
if ~isempty(searchResult)
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to use same font for blocks to ensure uniform appearance of model. '...
 'The following blocks use a font other than ' regularFontName ': ']);
 ResultDetails{end+1} = searchResult;
 mdladvObj.setCheckResultStatus(false);
 myLVParam = ModelAdvisor.ListViewParameter;
 myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter
 myLVParam.Data = get_param(searchResult,'object')';
 myLVParam.Attributes = {'FontName'}; % name is default property
 mdladvObj.setListViewParameters({myLVParam});
 needEnableAction = true;
else
 ResultDescription{end+1} = ModelAdvisor.Paragraph('All block font names are identical.');
 ResultDetails{end+1} = {};
end

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',regularFontSize);
% look for different font size blocks in the system
searchResult = setdiff(allBlks, regularBlks);

9 Create Procedural-Based Model Advisor Configurations

9-16

if ~isempty(searchResult)
 ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to use same font size for blocks to ensure uniform appearance of model. '...
 'The following blocks use a font size other than ' num2str(regularFontSize) ': ']);
 ResultDetails{end+1} = searchResult;
 mdladvObj.setCheckResultStatus(false);
 myLVParam = ModelAdvisor.ListViewParameter;
 myLVParam.Name = 'Invalid font size blocks'; % the name appeared at pull down filter
 myLVParam.Data = get_param(searchResult,'object')';
 myLVParam.Attributes = {'FontSize'}; % name is default property
 mdladvObj.setListViewParameters({mdladvObj.getListViewParameters{:}, myLVParam});
 needEnableAction = true;
else
 ResultDescription{end+1} = ModelAdvisor.Paragraph('All block font sizes are identical.');
 ResultDetails{end+1} = {};
end

mdladvObj.setActionEnable(needEnableAction);
mdladvObj.setCheckErrorSeverity(1);

% -----------------------------
% Sample StyleOne callback function,
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = SampleStyleOneCallback(system)
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

if strcmp(get_param(bdroot(system),'ScreenColor'),'white')
 result = ModelAdvisor.Text('Passed',{'pass'});
 mdladvObj.setCheckResultStatus(true); % set to pass
 mdladvObj.setActionEnable(false);
else
 result = ModelAdvisor.Text('It is recommended to select a Simulink window screen color of white to ensure a readable and printable model. ');
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
 mdladvObj.setCheckErrorSeverity(1);
end

% -----------------------------
% Sample StyleTwo callback function,
% please refer to Model Advisor API document for more details.
% -----------------------------
function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)
ResultDescription ={};
ResultDetails ={};

 Add Checks and Tasks to the Model Advisor

9-17

model = bdroot(system);
mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object
mdladvObj.setCheckResultStatus(true); % init result status to pass

% Check Simulation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph('Check Simulation optimization settings:');
if strcmp(get_param(model,'BlockReduction'),'off')
 ResultDetails{end+1} = {ModelAdvisor.Text('It is recommended to turn on Block reduction optimization option.',{'italic'})};
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
else
 ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};
end

% Check code generation optimization setting
ResultDescription{end+1} = ModelAdvisor.Paragraph('Check code generation optimization settings:');
ResultDetails{end+1} = {};
if strcmp(get_param(model,'LocalBlockOutputs'),'off')
 ResultDetails{end}{end+1} = ModelAdvisor.Text('It is recommended to turn on Enable local block outputs option.',{'italic'});
 ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
end
if strcmp(get_param(model,'BufferReuse'),'off')
 ResultDetails{end}{end+1} = ModelAdvisor.Text('It is recommended to turn on Reuse block outputs option.',{'italic'});
 mdladvObj.setCheckResultStatus(false); % set to fail
 mdladvObj.setActionEnable(true);
end
if isempty(ResultDetails{end})
 ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});
end

% -----------------------------
% Sample action callback function,
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = sampleActionCB(taskobj)
mdladvObj = taskobj.MAObj;
system = getfullname(mdladvObj.System);

% get input parameters
inputParams = mdladvObj.getInputParameters;

9 Create Procedural-Based Model Advisor Configurations

9-18

regularFontSize = inputParams{2}.Value;
regularFontName = inputParams{3}.Value;

% find all blocks inside current system
allBlks = find_system(system);
% block diagram itself doesn't have font property
% get blocks inside current system that have font property
allBlks = setdiff(allBlks, {system});

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);
% look for different font blocks in the system
fixBlks = setdiff(allBlks, regularBlks);
% fix them one by one
for i=1:length(fixBlks)
 set_param(fixBlks{i},'FontName',regularFontName);
end
% save result
resultText1 = ModelAdvisor.Text([num2str(length(fixBlks)), ' blocks has been updated with specified font ', regularFontName]);

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',str2double(regularFontSize));
% look for different font size blocks in the system
fixBlks = setdiff(allBlks, regularBlks);
% fix them one by one
for i=1:length(fixBlks)
 set_param(fixBlks{i},'FontSize',regularFontSize);
end
% save result
resultText2 = ModelAdvisor.Text([num2str(length(fixBlks)), ' blocks has been updated with specified font size ', regularFontSize]);
result = ModelAdvisor.Paragraph;
result.addItem([resultText1 ModelAdvisor.LineBreak resultText2]);
mdladvObj.setActionEnable(false);

% -----------------------------
% Sample action callback function for Check Simulink window screen color
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = sampleActionCB2(taskobj)
mdladvObj = taskobj.MAObj;
system = mdladvObj.System;
set_param(bdroot(system),'ScreenColor','white');
result = ModelAdvisor.Text('Simulink window screen color has been updated to white color.');
mdladvObj.setActionEnable(false);

 Add Checks and Tasks to the Model Advisor

9-19

% -----------------------------
% Sample action callback function for model optimization settings
% please refer to Model Advisor API document for more details.
% -----------------------------
function result = sampleActionCB3(taskobj)
mdladvObj = taskobj.MAObj;
model = bdroot(mdladvObj.System);
set_param(model,'BlockReduction','on');
set_param(model,'LocalBlockOutputs','on');
set_param(model,'BufferReuse','on');
result = ModelAdvisor.Text('Model optimization options "Block reduction", "Enable local block outputs", and "Reuse block outputs" have been turned on');
mdladvObj.setActionEnable(false);

9 Create Procedural-Based Model Advisor Configurations

9-20

Deploy Custom Configurations

10

Overview of Deploying Custom Configurations

About Deploying Custom Configurations
When you create a custom configuration, often you deploy the custom configuration to
your development group. Deploying the custom configuration allows your development
group to review models using the same checks.

After you create a custom configuration, you can use it in the Model Advisor, or deploy the
configuration to your users. You can deploy custom configurations whether you created
the configuration using the Model Advisor Configuration Editor or within the
customization file.

Deploying Custom Configurations Workflow
When you deploy custom configurations, you:

1 Optionally author custom checks, as described in “Create Model Advisor Checks”.
2 Organize checks and folders to create custom configurations, as described in “Create

Custom Configurations” on page 8-2.
3 Deploy the custom configuration to your users, as described in “How to Deploy

Custom Configurations” on page 10-3.

10 Deploy Custom Configurations

10-2

How to Deploy Custom Configurations
To deploy a custom configuration:

1 Determine which files to distribute. You might need to distribute more than one file.

If You... Using the... Distribute...
Created custom checks Customization file • sl_customization.

m
• Files containing check

and action callback
functions (if separate)

Organized checks and
folders

Model Advisor
Configuration Editor

Configuration MAT file

Customization file sl_customization.m
2 Distribute the files and tell the user to include these files on the MATLAB path.
3 Instruct the user to load the custom configuration.

See Also

Related Examples
• “Automatically Load and Set the Default Configuration” on page 10-5
• “Manually Load and Set the Default Configuration” on page 10-4

 How to Deploy Custom Configurations

10-3

Manually Load and Set the Default Configuration
When you use the Model Advisor, you can load any configuration. Once you load a
configuration, you can set it so that the Model Advisor use that configuration every time
you open the Model Advisor.

1 Open the Model Advisor.
2 Select Settings > Load Configuration.
3 In the Open dialog box, navigate to and select the configuration file that you want to

edit.
4 Click Open.

Simulink reloads the Model Advisor using the new configuration.
5 Optionally, when the Model Advisor opens, set the current configuration as the

default by selecting File > Set Current Configuration as Default.

See Also

Related Examples
• “Automatically Load and Set the Default Configuration” on page 10-5
• “Update the Environment to Include Your sl_customization File” on page 8-17

More About
• “Organize Checks and Folders Using the Model Advisor Configuration Editor” on

page 8-5
• “Register Checks” on page 7-41

10 Deploy Custom Configurations

10-4

Automatically Load and Set the Default Configuration
When you use the Model Advisor, you can automatically set the default configuration by
modifying an sl_customization.m file.

1 Place a configuration MAT file on your MATLAB path.
2 Modify your sl_customization.m file by adding the function:

function [checkCellArray taskCellArray] = ModelAdvisorProcessFunction ...
 (stage, system, checkCellArray, taskCellArray)
 switch stage
 case 'configure'
 ModelAdvisor.setConfiguration('qeAPIConfigFilePath.mat');
end

In the function, replace qeAPIConfigFilePath.mat with the name of the
configuration MAT file in step 1.

3 The sl_customization.m file is loaded every time you start the Model Advisor,
using qeAPIConfigFilePath.mat as the default configuration.

Tip You can restore the MathWorks default configuration by selecting File > Restore
Default Configuration.

See Also

Related Examples
• “Manually Load and Set the Default Configuration” on page 10-4
• “Update the Environment to Include Your sl_customization File” on page 8-17

More About
• “Organize Checks and Folders Using the Model Advisor Configuration Editor” on

page 8-5
• “Register Checks” on page 7-41

 Automatically Load and Set the Default Configuration

10-5

